DOI QR코드

DOI QR Code

Bridge modal identification based on frequency variation caused by a parked vehicle

  • He, Wen-Yu (Department of Civil Engineering, Hefei University of Technology) ;
  • Ren, Wei-Xin (College of Civil and Transportation Engineering, Shenzhen University) ;
  • Wang, Quan (Department of Civil Engineering, Hefei University of Technology) ;
  • Wang, Zuo-Cai (Department of Civil Engineering, Hefei University of Technology)
  • Received : 2020.09.27
  • Accepted : 2022.10.04
  • Published : 2022.11.10

Abstract

Modal parameters are the main dynamic characteristics of bridge. This study aims to propose an innovative route to estimate the modal parameters for bridges by using a parked vehicle in which mode shapes with high accuracy and spatial resolution are identified by frequency measurement. Based on the theory of dynamic modification and modal identification, the mathematical formulation between the parked mass induced frequency variation and the modal parameters of a bridge is derived. Then this mathematical formulation is extended to a parked vehicle-bridge system. The arithmetic and processes for estimating the modal parameters based on the identified frequency variation of the vehicle-bridge systems when the vehicle locates at sequentially arranged positions are presented. Finally the proposed method is applied to several simulated bridges of different types. The results indicate that it can estimate the modal parameters with high accuracy and efficiency.

Keywords

Acknowledgement

The paper is supported by the National Natural Science Foundation of China (51878234), Natural Science Fund for Distinguished Young Scholars of Anhui Province (2208085J20), Shenzhen Science and Technology Program (KQTD20180412181337494), and Key Research and Development Project of Anhui Province (1804a0802204).

References

  1. Altunisik, A.C., Bayraktar, A. and Ozdemir, H. (2012), "Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements", Smart Struct. Syst., 10(2), 131-154. http://doi.org/10.12989/sss.2012.10.2.131.
  2. Au, F.T.K. and Qi Z.Q. (2016), "Constructing mode shapes of a girder bridge using responses of a moving vehicle under impact excitation", IABSE Symposium Report, 106(12), 180-187. http://doi.org/10.2749/222137816819258447.
  3. Bernal, D. (2004), "Modal scaling from known mass perturbations", J. Eng. Mech., 130(9), 1083-1088. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:9(1083)
  4. Brinker, R., Zhang, L.M. and Anderson, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10, 441-445. https://doi.org/10.1088/0964-1726/10/3/303.
  5. Cantero, D., McGetrick, P., Kim, C.W. and Obrien, E.J. (2019), "Experimental monitoring of bridge frequency evolution during the passage of vehicles with different suspension properties", Eng. Struct., 187, 209-219. https://doi.org/10.1016/j.engstruct.2019.02.065.
  6. Chang, K.C., Kim, C.W. and Borjigin, S. (2014), "Variability in bridge frequency induced by a parked vehicle", Smart Struct. Syst., 13(5), 755-773. http://doi.org/10.12989/sss.2014.13.5.755.
  7. Chang, M., Kim, J.K. and Lee, J. (2019), "Hierarchical neural network for damage detection using modal parameters", Struct. Eng. Mech., 70(4), 457-466. http://doi.org/10.12989/sem.2019.70.4.457.
  8. Chen, H.P. and Maung, T.S. (2014), "Regularized finite element model updating using measured incomplete modal data", J. Sound Vib., 333(21), 5566-5582. https://doi.org/10.1016/j.jsv.2014.05.051.
  9. Chen, Z. and Yu, L. (2020), "A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion", Struct. Eng. Mech., 75(4), 445-454. http://doi.org/10.12989/sem.2020.75.4.445.
  10. Cho, S., Yun, C.B. and Sim, S.H. (2015), "Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model", Smart Struct, Syst., 15(3), 645-663. http://doi.org/10.12989/sss.2015.15.3.645.
  11. Coppotelli, G. (2009), "On the estimate of the FRFs from operational data", Mech. Syst. Signal Pr., 23(2), 288-299. https://doi.org/10.1016/j.ymssp.2008.05.004.
  12. Cross, E.J., Koo, K.Y., Brownjohn, J.M.W. and Worden, K. (2013), "Long-term monitoring and data analysis of the Tamar bridge", Mech. Syst. Signal Pr., 35(1-2), 16-34. https://doi.org/10.1016 /j.ymssp.2012.08.026. https://doi.org/10.1016/j.ymssp.2012.08.026
  13. Gul, M. and Catbas, F.N. (2008), "Ambient vibration data analysis for structural identification and global condition assessment", J. Eng. Mech., 134(8), 650-662. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(650).
  14. He, W.Y. and Ren, W.X. (2013), "Adaptive trigonometric wavelet composite beam element", Adv Struct Eng., 16(11), 1899-1910. https://doi.org/10.1260/1369-4332.16.11.1899.
  15. He, W.Y. and Ren, W.X. (2018), "Structural damage detection using a parked vehicle induced frequency variation", Eng. Struct., 170, 34-41. https://doi.org/10.1016/j.engstruct.2018.05.082.
  16. He, W.Y. and Zhu, S. (2016), "Moving load-induced response of damaged beam and its application in damage localization", J Vib. Control, 22(16), 3601-3617. https://doi.org/10.1177/1077546 314564587.
  17. He, W.Y., He, J. and Ren, W.X. (2019), "The use of mode shape estimated from a passing vehicle for structural damage localization and quantification", Int. J. Struct. Stab. Dyn., 19(10), 1950124. https://doi.org/10.1142/S0219455419501244.
  18. He, W.Y., Ren, W.X. and Zuo, X.H. (2018), "Mass-normalized mode shape identification method for bridge structures using parking vehicle-induced frequency change", Struct Control Hlth. Monit., 25, e2174. https://doi.org/10.1002/stc.2174.
  19. Hwang, J., Kareem, A. and Kim, W. (2009), "Estimation of modal loads using structural response", J. Sound Vib., 326(3-5), 522-539. https://doi.org/10.1016/j.jsv.2009.05.003.
  20. Jaishi, B. and Ren, W.X. (2006), "Damage detection by finite element model updating using modal flexibility residual", J. Sound Vib., 290(1-2), 369-387. https://doi.org/10.1016/j.jsv.2005. 04.006.
  21. Keenahan, J., OBrien, E.J., McGetrick, P.J. and Gonzalez, A. (2014), "The use of a dynamic truck trailer drive-by system to monitor bridge damping", Struct. Hlth. Monit., 13, 143-157. https://doi.org/10.1177/1475921713513974.
  22. Kong, X., Cai, C.S., Deng, L. and Zhang, W. (2017), "Using dynamic responses of moving vehicles to extract bridge modal properties of a field bridge", J. Bridge Eng., 22(6), 04017018. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001 038.
  23. Le, T.P. and Paultre, P. (2012), "Modal identification based on continuous wavelet transform and ambient excitation tests", J. Sound Vib., 331(9), 2023-2037. https://doi.org/10.1016/j.jsv.2012.01.018.
  24. Lopez-Aenlle, M. and Brincker, R. (2013), "Modal scaling in operational modal analysis using a finite element model", Int. J. Mech. Sci., 76, 86-101. https://doi.org/10.1016/j.ijmecsci.2013.09.003.
  25. Lopez-Aenlle, M., Brincker, R., Pelayo, F. and Cantelia, A.F. (2012), "On exact and approximated formulations for scaling-mode shapes in operational modal analysis by mass and stiffness change", J. Sound Vib., 331(3), 622-637. https://doi.org/10.1016/j.jsv.2011.09.017.
  26. Luo, Z., Yu, L., Liu, H. and Chen, Z. (2020), "Anti-sparse representation for structural model updating using l∞ norm regularization", Struct. Eng. Mech., 75(4), 477-485. https://doi.org/10.12989/sem.2020.75.4.477.
  27. Mao, J.X., Wang, H., Feng, D.M., Tao, T.Y. and Zheng W.Z. (2018), "Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition", Struct. Control Hlth. Monit., 25(5), e2146. https://doi.org/10.1002/stc.2146.
  28. Marashi, S.M., Pashaei, M.H. and Khatibi, M.M. (2019), "Estimating the mode shapes of a bridge using short time transmissibility measurement from a passing vehicle", J. Appl. Comput. Mech., 5(4), 735-748. https://doi.org/10.22055/JACM.2019.27225.1385.
  29. Navik, P., Ronnquist, A. and Stichel, S. (2016), "Identification of system damping in railway catenary wire systems from full-scale measurements", Eng. Struct., 113(15), 71-78. https://doi.org/10. 1016/j.engstruct.2016.01.031. https://doi.org/10.1016/j.engstruct.2016.01.031
  30. OBrien, E.J. and Malekjafarian, A. (2016), "A mode shape-based damage detection approach using laser measurement from a vehicle crossing a simply supported bridge", Struct. Control Hlth. Monit., 23(10), 1273-1286. https://doi.org/10.1002/stc.1841.
  31. Onat, O. (2019), "Fundamental vibration frequency prediction of historical masonry bridges", Struct. Eng. Mech., 69(2), 155-162. https://doi.org/10.12989/sem.2019.69.2.155.
  32. Pandey, A.K. and Biswas M. (1994), "Damage detection in structures using changes in flexibility", J. Sound Vib., 169, 3-17. https://doi.org/10.1006/jsvi.1994.1002.
  33. Parloo, E., Cauberghe, B., Benedettini, F., Alaggio, R. and Guillaume, P. (2005), "Sensitivity-based operational mode shape normalization: Application to a bridge", Mech. Syst. Signal Pr., 19(1), 43-55. https://doi.org/10.1016/j.ymssp.2004.03.009.
  34. Sheibani, M. and Ghorbani-Tanh, A.K. (2021), "Obtaining mass normalized mode shapes of motorway bridges based on the effect of traffic movement", Struct., 33, 2253-2263. https://doi.org/10.1016/j.istruc.2021.05.056.
  35. Siringoringo, D., Fujino, Y. and Nagayama, T. (2013), "Dynamic characteristics of an overpass bridge in a full-scale destructive test", J. Eng. Mech., 139(6), 691-701. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000280.
  36. Tan, C., Uddin, N., OBrien, E.J. and McGetrick, P.J. (2019), "Extraction of bridge modal parameters using passing vehicle response", J. Bridge Eng., 24(9), 04019087. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001477.
  37. Tian, Y., Zhang, J., Xia, Q. and Li, P. (2017), "Flexibility identification and deflection prediction of a three-span concrete box girder bridge using impacting test data", Eng. Struct. 146(1), 158-169. https://doi.org/10.1016/j.engstruct.2017.05.039.
  38. Vahidi, M., Vahdani, S., Rahimian, M., Jamshidi, N. and Kanee, A.T. (2019), "Evolutionary-base finite element model updating and damage detection using modal testing results", Struct. Eng. Mech., 70(3), 339-350. http://doi.org/10.12989/sem.2019.70.339.
  39. Yang, J., Lam, H.F. and Hu, J. (2015), "Ambient vibration test, modal identification and structural model updating following Bayesian framework", Int. J. Struct. Stab. Dyn., 15(7), 1540024. https://doi.org/10.1142/S0219455415400246.
  40. Yang, Y.B., Cheng, M.C. and Chang, K.C. (2013), "Frequency variation in vehicle-bridge interaction systems", Int. J. Struct. Stab. Dyn., 13(2), 1350019. http://doi.org/10.1142/S0219455413500193.
  41. Yang, Y.B., Li, Y.C. and Chang, K.C. (2014), "Constructing the mode shapes of a bridge from a passing vehicle: A theoretical study", Smart Struct. Syst., 13(5), 797-819. http://doi.org/10.12989/sss.2014.13.5.797.
  42. Zhou, L. and Zhang, J. (2019), "Continuous force excited bridge dynamic test and structural flexibility identification theory", Struct. Eng. Mech., 71(4), 391-405. http://doi.org/10.12989/sem.2019.71.4.391.
  43. Zhu, L. and Malekjafarian, A. (2019), "On the use of ensemble empirical mode decomposition for the identification of bridge frequency from the responses measured in a passing vehicle", Infrastruct., 4(2), 32. https://doi.org/10.3390/infrastructures4020032.