DOI QR코드

DOI QR Code

Development of CNT Coating Process using Argon Atmospheric Plasma

아르곤 상압플라즈마를 이용한 CNT 코팅 공정 기술 개발

  • Kim, Kyoung-Bo (Department of Materials Science and Engineering, Inha Technical College) ;
  • Lee, Jongpil (Department of Electrical and Electronic Engineering, Jungwon University) ;
  • Kim, Moojin (Department of Electronic Engineering, Kangnam University)
  • 김경보 (인하공업전문대학 재료공학과) ;
  • 이종필 (중원대학교 전기전자공학과) ;
  • 김무진 (강남대학교 전자공학과)
  • Received : 2022.07.04
  • Accepted : 2022.10.20
  • Published : 2022.10.28

Abstract

In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.

본 논문에서는 용액 기반의 탄소나노튜브(CNT: Carbon Nano-tube)를 전자기기의 전도성 소재로 사용하기 위하여 쉽고 빠르게 형성하는 방법에 대해 연구하였다. 이를 위해 스핀 코팅 방법 및 아르곤 상압플라즈마 공정을 적용하여 글라스 위에 CNT 박막 코팅을 진행하였다. 코팅 횟수에 따른 전기적, 물리적 특성 변화를 관찰하기 위하여 1회부터 5회까지 동일한 방법으로 형성된 샘플을 제작하였고, 각 샘플에 대해 표면 형상, 반사도, 투과도, 흡수율 및 표면 저항을 측정하였다. 현미경을 이용하여 관찰했을 때 횟수가 늘어날 때 글라스 상에 검은 형상이 더 잘 관찰되며, 특히 스핀코팅에 의해 가운데 영역이 더 검게 관찰되는 것을 알 수 있다. 코팅 수가 증가함에 따라 측정 파장의 전 영역에서 투과도는 감소, 반사도 및 흡수율은 증가하였다. 또한, 파장이 감소함에 따라 투과율은 감소, 반사도 및 흡수율은 증가한다. 전기적인 특성의 경우, 2번 코팅했을 때 전도도가 상당히 향상됨을 확인할 수 있었으며, 추가 코팅에 의해서 전도도 감소가 관찰되지만, 큰 변화를 보이지는 않았다. 결론적으로 CNT를 투명전극으로 대체하기 위해서는 반사도 및 전기전도도를 함께 고려하여 코팅 횟수를 고려해야 하며, 2회가 최적임을 알 수 있다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1F1A1046135).

References

  1. A. N. Thiessen, M. Ha, R. W. Hooper, H. Yu, A. O. Oliynyk, J. G. C. Veinot & V. K. Michaelis (2019). Silicon Nanoparticles: Are They Crystalline from the Core to the Surface?. Chemistry of Materials, 31(3), 678-688. DOI : 10.1021/acs.chemmater.8b03074
  2. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Bohm, S. Jatta, F. Kuppers, P. Meissner & M. Amann (2011). Surface micromachined tunable 1.55 µm-VCSEL with 102 nm continuous single-mode tuning. Optics Express, 19(18), 17336-17343. DOI : 10.1364/OE.19.017336
  3. K. B. Kim, M. J. Kim, J. H. Baek, Y. J. Park, J. R. Lee, J. S. Kim & C. W. Jeon (2014). Influence of Cr Thin Films on the Properties of Flexible CIGS Solar Cells on Steel Substrates. Electronic Materials Letters, 10(1), 247-251. DOI : 10.1007/s13391-013-3158-3
  4. M. H. Yun, J. H. Jang, K. M. Kim, H. E. Song, J. C. Lee & J. Y. Kim (2013). A hybrid solar cell fabricated using amorphous silicon and a fullerene derivative. Physical Chemistry Chemical Physics, 15(45), 19913-19918. DOI : 10.1039/C3CP53493F
  5. K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156/CS4SMB.2019.9.3.075
  6. A. K. Geim & K. S. Novoslov (2007). The rise of graphene. Nature materials, 6, 183-191. DOI : 10.1038/nmat1849
  7. M. Sianipar, S. H. Kim, Khoiruddin, F. Iskandar & I G. Wenten (2017). Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Advances, 7, 51175-51198. DOI : 10.1039/C7RA08570B
  8. R. Nissler, J. Ackermann, C. Ma, S. Kruss (2022). Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Analytical Chemistry, 94(28), 9941-9951. DOI : 10.1021/acs.analchem.2c01321
  9. J. Sheng and Y. Li (2022). Applications of Carbon Nanotubes in Oxygen Electrocatalytic Reactions. ACS Applied Materials & Interfaces, 14(18), 20455- 20462. DOI : 10.1021/acsami.1c08104
  10. Z. Lin, Y. Yang, A. Jagota, M. Zheng (2022). Machine Learning-Guided Systematic Search of DNA Sequences for Sorting Carbon Nanotubes. ACS Nano, 16(3), 4705-4713. DOI : 10.1021/acsnano.1c11448
  11. S. C. Dixon, D. O. Scanlon, C. J. Carmalt & I. P. Parkin (2016). n-Type doped transparent conducting binary oxides: an overview. Journal of Materials Chemistry C, 4, 6946-6961. DOI : 10.1039/C6TC01881E
  12. Y. Fang, D. Commandeur, W. C. Lee & Q. Chen (2020). Transparent conductive oxides in photoanodes for solar water oxidation. Nanoscale Advances, 2, 626-632. DOI : 10.1039/C9NA00700H
  13. M. Esro, S. Georgakopoulos, H. Lu, G. Vourlias, A. Krier, W. I. Milne, W. P. Gillin & G. Adamopoulos (2016). Solution processed SnO2:Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes. Journal of Materials Chemistry C, 4, 3563-3570. DOI : 10.1039/C5TC04117A