DOI QR코드

DOI QR Code

Effects of vowel types and sentence positions in standard passage on auditory and cepstral and spectral measures in patients with voice disorders

모음 유형과 표준문단의 문장 위치가 음성장애 환자의 청지각적 및 켑스트럼 및 스펙트럼 분석에 미치는 효과

  • Mi-Hyeon Choi (Graduate Program in Audiology & Speech-Language Pathology, Daegu Catholic University) ;
  • Seong Hee Choi (Graduate Program in Audiology & Speech-Language Pathology, Daegu Catholic University)
  • 최미현 (대구가톨릭대학교 일반대학원 언어청각치료학과) ;
  • 최성희 (대구가톨릭대학교 일반대학원 언어청각치료학과)
  • Received : 2023.11.23
  • Accepted : 2023.12.13
  • Published : 2023.12.31

Abstract

Auditory perceptual assessment and acoustic analysis are commonly used in clinical practice for voice evaluation. This study aims to explore the effects of speech task context on auditory perceptual assessment and acoustic measures in patients with voice disorders. Sustained vowel phonations (/a/, /e/, /i/, /o/, /u/, /ɯ/, /ʌ/) and connected speech (a standardized paragraph 'kaeul' and nine sub-sentences) were obtained from a total of 22 patients with voice disorders. GRBAS ('G', 'R', 'B', 'A', 'S') and CAPE-V ('OS', 'R', 'B', 'S', 'P', 'L') auditory-perceptual assessment were evaluated by two certified speech language pathologists specializing in voice disorders using blind and random voice samples. Additionally, spectral and cepstral measures were analyzed using the analysis of dysphonia in speech and voice model (ADSV).When assessing voice quality with the GRBAS scale, it was not significantly affected by the vowel type except for 'B', while the 'OS', 'R' and 'B' in CAPE-V were affected by the vowel type (p<.05). In addition, measurements of CPP and L/H ratio were influenced by vowel types and sentence positions. CPP values in the standard paragraph showed significant negative correlations with all vowels, with the highest correlation observed for /e/ vowel (r=-.739). The CPP of the second sentence had the strongest correlation with all vowels. Depending on the speech stimulus, CAPE-V may have a greater impact on auditory-perceptual assessment than GRBAS, vowel types and sentence position with consonants influenced the 'B' scale, CPP, and L/H ratio. When using vowels in the voice assessment of patients with voice disorders, it would be beneficial to use not only /a/, but also the vowel /i/, which is acoustically highly correlated with 'breathy'. In addition, the /e/ vowel was highly correlated acoustically with the standardized passage and sub-sentences. Furthermore, given that most dysphonic signals are aperiodic, 2nd sentence of the 'kaeul' passage, which is the most acoustically correlated with all vowels, can be used with CPP. These results provide clinical evidence of the impact of speech tasks on auditory perceptual and acoustic measures, which may help to provide guidelines for voice evaluation in patients with voice disorders.

청지각적 평가 및 음향학적 분석은 음성평가를 위해 임상 현장에서 일반적으로 사용해오고 있다. 본 연구는 음성장애 환자의 청지각적 및 음향학적 측정 시 말 과제 효과를 조사하고자 한다. 음성장애로 진단받은 총 22명의 환자로부터 모음연장발성(/a/, /e/, /i/, /o/, /u/, /ɯ/, /ʌ/)과 연속구어('가을'표준문단의 9개 하위문장)를 녹음하였다. 음성장애 평가 및 치료 경험이 있는 2명의 음성언어치료사가 맹검 및 무작위 음성 샘플을 사용하여 GRBAS('G', 'R', 'B', 'A', 'S')척도 및 CAPE-V('OS', 'R', 'B', 'S', 'P', 'L')를 사용하여 청지각적 평가를 실시하였다. 또한, ADSV(analysis of dysphonia in speech and voice model)를 이용하여 켑스트럼 및 스펙트럼 측정치를 구하였다. 모음 유형에 따라 GRBAS 척도에서 'B'를 제외하고 청지각적 평가에 영향을 미치지 않았으나, CAPE-V에서는 'OS', 'R', 'B'에 영향을 미쳤다(p<.05). CPP 및 L/H ratio 는 모음 유형과 문장 위치의 영향을 받았다. 표준문단의 CPP값은 모든 모음에서 'G', 하위 9문장과 유의미한 부적 상관 관계가 나타났고, 특히, /e/모음(r=-.739)에서 가장 높은 상관관계를 보였다. 두 번째 문장의 CPP는 모든 모음과 높은 상관관계를 보였다. CAPE-V는 말 자극에 따라 GRBAS보다 청지각적 평가에 더 많은 영향을 받을 수 있으며, 'B' 척도, CPP, L/H ratio는 모음 유형과 자음을 포함한 문장 위치에 따라 영향을 받았다. 따라서, 음성 장애 환자의 음성 평가에서 모음을 사용할 때는 /a/뿐만 아니라 ' 기식성'음질과 음향적으로 상관성이 높은 /i/모음을 함께 사용하는 것이 유용할 수 있다. 또한 /e/모음은 한국 표준문단 '가을' 및 하위 문장들과 음향적으로 상관성이 높았으므로 문단 대신 사용할 수 있을 것이다. 또한, 음성장애 신호들이 대부분 비주기적이라는 점을 감안할 때, CPP와 함께 표준문단 중 가장 음향적으로 상관성이 높은 두 번째 문장을 사용할 수 있을 것이다. 이러한 결과는 말과제가 청지각적 평가 및 음향학적 측정에 미치는 영향에 대한 임상적 증거를 제공하며, 이는 음성장애 환자의 음성 평가에 대한 가이드라인을 제공하는 데 도움을 줄 수 있을 것이다.

Keywords

References

  1. Anders, L.C., Hollien, H., Hurme, P., Sonninen, A., & Wendler, J. (1988). Perception of hoarseness by several classes of listeners. Folia Phoniatrica, 40(2), 91-100. https://doi.org/10.1159/000265889
  2. Brinca, L.P., Batista, A.P.F., Tavares, A. I., Goncalves, I. C., &Moreno, M. L. (2014). Use of cepstral analyses for differentiating normal from dysphonic voices: A comparative study of connected speech versus sustained vowel in European Portugueses female speakers. Journal of Voice, 28(3), 282-286. https://doi.org/10.1016/j.jvoice.2013.10.001
  3. Cheong, O. R. (1993). Neurogenic language disorder diagnostic tool. Daegu: Korean Speech-Language & Hearing Association.
  4. Choi, S. (2013). Speech-language pathologists' voice assessment and voice therapy practices: A survey for standard clinical guideline and evidence-based practice. Communication Sciences & Disorders, 18(4), 473-485. https://doi.org/10.12963/csd.13082
  5. Choi, S. H. (2018). Development of Korean standardized sentences on voice quality evaluation for dysphonia. Audiology and Speech Research, 14(2), 128-142. https://doi.org/10.21848/asr.2018.14.2.128
  6. Choi, S. H. & Choi, C. H. (2009). Multiple average ratings of auditory perceptual analysis for dysphonia. Phonetics and Speech Sciences, 1(4), 165-170.
  7. Choi, S. H. & Choi, C. H. (2014). The Utility of Perturbation, Non-linear dynamic, and cepstrum measures of dysphonia according to Signal Typing. Phonetics and Speech Sciences, 6(3), 63-72. https://doi.org/10.13064/KSSS.2014.6.3.063
  8. Choi, S. H., & Choi, C. H. (2016). The effect of gender and speech task on cepstral- and spectral-measures of Korean normal speakers. Audiology and Speech Research, 12(3), 157-163. https://doi.org/10.21848/asr.2016.12.3.157
  9. Kang, Y. A., & Seong, C. J. (2012). A cepstral analysis of breathy voice with vocal fold paralysis. Phonetics and Speech Sciences, 4(2), 89-94. https://doi.org/10.13064/KSSS.2012.4.2.089
  10. Kim, H. H. (1996, February). Perceptual, acoustical, and physiological tools in ataxic dysarthria management: A case report. Proceedings of the KSPS Conference (pp. 9-22). Seoul, Korea.
  11. Kim G. H., Lee Y. W., Bae I. H., Park H. J., Lee J, S., Wang S. G., & Kwon S. B. (2016). A Cepstral Analysis of Voices With Glottic Cancer and Laryngeal Leukoplakia: Sustained Vowels and Continuous Speech. Journal of Speech-Language & Hearing Disorders, 25(3), 135-145.
  12. Kreiman, J., & Gerratt, B. R. (1998).Validity of rating scale measures of voice quality. The Journal of the Acoustical Society of America, 104(3 Pt 1), 1598-1608. https://doi.org/10.1121/1.424372
  13. Lee, J. M., Roy, N., Peterson, E., & Merrill, R. M. (2017a). Comparison of two multiparameter acoustic indices of dysphonia severity: The acoustic voice quality index and cepstral spectral index of dysphonia. Journal of Voice, 32(4), 515.E1-515.E13.
  14. Lee, M. S & Shin, H. J. (2010). The comparative study of auditory-perceptive evaluation and acoustic analyses on vowels and connected speech of dysphonia. Journal of Speech-Language & Hearing Disorders, 19(4), 17-37. https://doi.org/10.15724/jslhd.2010.19.4.002
  15. Lee, S., Lim, S., & Choi, H. (2017b). A comparison of cepstral and spectral measures according to measurement position in a reading passage. Communication Sciences & Disorders, 22(4), 818-826. https://doi.org/10.12963/csd.17433
  16. Lowell, S. Y., Colton, R. H., Kelley, R. T., & Hahn, Y. C. (2011). Spectral- and cepstral-based measures during continuous speech: Capacity to distinguish dysphonia and consistency within a speaker. Journal of Voice, 25(5), E223-E232. https://doi.org/10.1016/j.jvoice.2010.06.007
  17. Lowell, S. Y., Colton, R. H., Kelley, R. T., & Mizia, S. A. (2013). Predictive value and discriminant capacity of cepstral-and spectral-based measures during continuous speech. Journal of voice, 27(4), 393-400.
  18. Maryn, Y., Corthals, P., Van Cauwenberge, P., Roy, N., & De Bodt, M. (2010). Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels. Journal of voice, 24(5), 540-555. https://doi.org/10.1016/j.jvoice.2008.12.014
  19. Maryn, Y., Roy, N., De Bodt, M., Van Cauwenberge, P., & Corthals, P. (2009). Acoustic measurement of overall voice quality: A meta-analysis. The Journal of the Acoustical Society of America, 126(5), 2619-2634. https://doi.org/10.1121/1.3224706
  20. Moers, C., Mobius, B., Rosanowski, F., Noth, E., Eysholdt, U., & Haderlein, T. (2012). Vowel-and text-based cepstral analysis of chronic hoarseness. Journal of Voice, 26(4), 416-424. https://doi.org/10.1016/j.jvoice.2011.05.001
  21. Murry, T., & Doherty, E. T. (1980). Selected acoustic characteristics of pathologic and normal speakers. Journal of Speech, Language, and Hearing Research, 23(2), 361-369. https://doi.org/10.1044/jshr.2302.361
  22. Parsa, V., & Jamieson, D. G. (2001). Acoustic discrimination of pathological voice: Sustained vowels versus continuous speech. Journal of Speech, Language, and Hearing Research, 44(2), 327-339. https://doi.org/10.1044/1092-4388(2001/027)
  23. Patel, R. R., Awan, S. N., Barkmeier-Kraemer, J., Courey, M., Deliyski, D., Eadie, T., Paul, D., Svec, J. G., & Hillman, R. (2018). Recommended protocols for instrumental assessment of voice: American speech-language-hearing association expert panel to develop a protocol for instrumental assessment of vocal function. American Journal of Speech-Language Pathology, 27(3), 887-905. https://doi.org/10.1044/2018_AJSLP-17-0009
  24. Sampaio, M. C., Bohlender, J. E., & Brockmann-Bauser, M. (2021). Fundamental frequency and intensity effects on cepstral measures in vowels from connected speech of speakers with voice disorders. Journal of Voice, 35(3), 422-431. https://doi.org/10.1016/j.jvoice.2019.11.014
  25. Shim, H. J., Jung, H., Lee, S. A., Choi, B. H., Heo, J. H., & Ko, D. H. (2016). Cepstral and spectral analysis of voices with adductor spasmodic dysphonia. Phonetics and Speech Sciences, 8(2), 73-80. https://doi.org/10.13064/KSSS.2016.8.2.073
  26. Shin, J. Y., & Cha, J. E. (2003). Korean system of sounds: for the study of phonology in the Korean language. Seoul: Hankookmunhwasa.
  27. Shin, Y. J., Hong, K. H., Sim, H. S. (2011). Differences in GRBAS scales and shimmer according to vocal sample types in people with vocal disorders. Phonetics and Speech Sciences, 3(3), 149-155.
  28. Watts, C. R., & Awan, S. N. (2015). An examination of variations in the cepstral spectral index of dysphonia across a single breath group in connected speech. Journal of Voice, 29(1), 26-34. https://doi.org/10.1016/j.jvoice.2014.04.012
  29. Yoo, M., Choi, S., Choi, C., & Lee, K. (2017). Usefulness of cepstral acoustic index for estimating objective dysphonia severity. Communication Sciences & Disorders, 22(3), 587-596. https://doi.org/10.12963/csd.17411
  30. Yu, M., Choi, S. H. Choi, C. H., & Choi, B. (2018). Predicting normal and pathological voice using a cepstral based acoustic index in sustained vowels versus connected speech. Communication Sciences & Disorders, 23(4), 1055-1064.
  31. Webb. A.L., Carding, P.N., Daery, I. J., MacKenzie, K., Steen, N., Wilson, J.A. (2004). The reliability of three perceptual evaluation scales for dysphonia. European Archives of Otorhinolaryngology, 261(8), 429-34. https://doi.org/10.1007/s00405-003-0707-7
  32. Zraick, R. I., Kempster, G. B., Connor, N. P., Thibeault, S., Klaben, B. K., Bursac, Z., Thrush, C. R., ... Glaze, L. E. (2011). Establishing validity of the consensus auditory-perceptual evaluation of voice (CAPE-V). American Journal of Speech-Language Pathology, 20(1), 14-22. https://doi.org/10.1044/1058-0360(2010/09-0105)