DOI QR코드

DOI QR Code

Application of deterministic models for obtaining groundwater level distributions through outlier analysis

  • Dae-Hong Min (Department of Construction and Disaster Prevention Engineering, Daejeon University) ;
  • Saheed Mayowa Taiwo (Infrastructure Group, Manawatu District Council) ;
  • Junghee Park (Department of Civil, Environmental Engineering, Incheon national University) ;
  • Sewon Kim (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Hyung-Koo Yoon (Department of Construction and Disaster Prevention Engineering, Daejeon University)
  • 투고 : 2023.03.03
  • 심사 : 2023.11.16
  • 발행 : 2023.12.10

초록

The objective of this study is to perform outlier analysis to obtain the distribution of groundwater levels through the best model. The groundwater levels are measured in 10, 25 and 30 piezometers in Seoul, Daejeon and Suncheon in South Korea. Fifty-eight empirical distribution functions were applied to determine a suitable fit for the measured groundwater levels. The best fitted models based on the measured values are determined as the Generalized Pareto distribution, the Johnson SB distribution and the Normal distribution for Seoul, Daejeon and Suncheon, respectively; the reliability is estimated through the Anderson-Darling method. In this study, to choose the appropriate confidence interval, the relationship between the amount of outlier data and the confidence level is demonstrated, and then the 95% is selected at a reasonable confidence level. The best model shows a smaller error ratio than the GEV while the Mahalanobis distance and outlier labelling methods results are compared and validated. The outlier labelling and Mahalanobis distance based on median shown higher validated error ratios compared to their mean equivalent suggesting, the methods sensitivity to data structure.

키워드

과제정보

This research was supported by the Daejeon University Research Grants (2022).

참고문헌

  1. Aalianvari, A., Soltani-Mohammadi, S. and Rahemi, Z. (2018), "Estimation of geomechanical parameters of tunnel route using geostatistical methods", Geomech. Eng., 14(5), 453-466. https://doi.org/10.12989/gae.2018.14.5.453.
  2. Ahmadi, S.H. and Sedghamiz, A. (2007), "Geostatistical analysis of spatial and temporal variations of groundwater level", Environ. Monit. Assess., 129(1-3), 277-294. https://doi.org/10.1007/s10661-006-9361-z.
  3. Anderson, T.W. and Darling, D.A. (1954), "A test of goodness of fit", JASA, 49(268), 765-769. https://doi.org/10.1080/01621459.2022.2054816
  4. Arreyndip, N.A. and Joseph, E. (2016), "Generalized extreme value distribution models for the assessment of seasonal wind energy potential of Debuncha. Cameroon", Renew. Energy, https://doi.org/10.1155/2016/9357812.
  5. Aziz, M., Khan, T.A. and Ahmed, T. (2017), "Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan", Geomech. Eng., 13(3), 475-488. https://doi.org/10.12989/gae.2017.13.3.475.
  6. Benstock, D. and Cegla, F. (2017), "Extreme value analysis (EVA) of inspection data and its uncertainties", NDT & E Int., 87, 68-77. https://doi.org/10.1016/j.ndteint.2017.01.008.
  7. Cheung, S.W., Spitznagel, E., Featherstone, T. and Crane, J.P. (1990), "Exclusion of chromosomal mosaicism in amniotic fluid cultures: efficacy of in situ versus flask techniques", Prenatal diagnosis, 10(1), 41-57. https://doi.org/10.1002/pd.1970100108.
  8. Chiles, J. and Delfiner, P. (1999), "Geostatistics. Modeling spatial uncertainty", John Wiley & Sons, 497. https://doi.org/10.1080/02664763.2012.750474.
  9. Chowdhury, A., Jha, M.K. and Chowdary, V.M. (2010), "Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques", Environ. Earth Sci., 59(6), 1209. https://doi.org/10.1007/s12665-009-0110-9.
  10. Chowdhury, J.U., Stedinger, J.R. and Lu, L.H. (1991), "Goodness-of-fit tests for regional generalized extreme value flood distributions". Water Resour. Res., 27(7), 1765-1776. https://doi.org/10.1029/91WR00077.
  11. Cressie, N. (1993), Statistics for spatial data. John Wiley & Sons. https://doi.org/10.1002/119115151.
  12. D'Agostino, R.B. and Stephens, M.A. (1986), "Goodness of fit techniques", Marcel Dekker, https://doi.org/10.1201/9780203753064.
  13. Damazio, J.M. and Kelman, J. (1986), "Use of historical data in flood-frequency analysis", In Hydrologic Frequency Modeling, 487-497. https://doi.org/10.1016/0022-1694(87)90150-8.
  14. Davies, L. and Gather, U. (1993), "The identification of multiple outliers", JASA, 88(423), 782-792. https://doi.org/10.1080/01621459.1993.10476339.
  15. De Maesschalck, R., Jouan-Rimbaud, D. and Massart, D.L. (2000), "The Mahalanobis distance", Chemometrics and intelligent laboratory systems, 50(1), 1-18. https://doi.org/10.1016/s0169-7439(99)00047-7.
  16. Furst, J., Bichler, A. and Konecny, F. (2015), "Regional frequency analysis of extreme groundwater levels", Groundwater, 53(3), 414-423. https://doi.org/10.1111/gwat.12223.
  17. Gorgoso-Varela, J.J. and Rojo-Alboreca, A. (2014), "Use of Gumbel and Weibull functions to model extreme values of diameter distributions in forest stands", Annal. Forest Sci., 71(7), 741-750. https://doi.org/10.1007/s13595-014-0369-1.
  18. Grubbs, F.E. (1969), "Procedures for detecting outlying observations in samples", Technometrics, 11(1), 1-21. https://doi.org/10.1080/00401706.1969.10490657.
  19. Hampel, F.R. (1985), "The breakdown points of the mean combined with some rejection rules", Technometrics, 27(2), 95-107. https://doi.org/10.1080/01621459.1981.10477698.
  20. Hemeda, S. (2022), Geotechnical modelling and subsurface analysis of complex underground structures using PLAXIS 3D", Int. J. Geo-Eng., 13(1), 9.
  21. Hook, E.B. (1977), "Exclusion of chromosomal mosaicism: tables of 90%, 95% and 99% confidence limits and comments on use", Am. J. Human Genetics, 29(1), 94. https://doi.org/PMID:835578.
  22. Hosking, J.R.M. and Wallis, J.R. (1997), "Regional frequency analysis: An approach based on L-moments", Cambridge University Press, 1233. https://doi.org/10.1017/CBO9780511529443.
  23. Iglewicz, B. and Martinez, J. (1982), "Outlier detection using robust measures of scale", J. Stat. Comput. Simul., 15(4), 285-293. https://doi.org/10.1080/00658208810595.
  24. James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013), "An introduction to statistical learning", Springer, 12, 187-190. https://doi.org/10.1007/978-1-4614-7138-7
  25. Johnston, K., Ver Hoef, J.M., Krivoruchko, K. and Lucas, N. (2001), "Using ArcGIS geostatistical analyst", ESRI. Redlands, https://doi.org/10.1002/ep.10223.
  26. Kitanidis, P.K. (1997), "Introduction to geostatistics: applications in hydrogeology", Cambridge University Press, https://doi.org/10.1007/978-1-4020-5729-8_4.
  27. Leys, C., Ley, C., Klein, O., Bernard, P. and Licata, L. (2013), "Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median", J. Exp. Social Psychol., 49(4), 764-766. https://doi.org/10.1016/j.jesp.2013.03.013.
  28. Marsaglia, G. and Marsaglia, J. (2004), "Evaluating the Anderson-darling distribution", J. Stat. Software, 9(2), 1-5. https://doi.org/10.18637/jss.v009.i02.
  29. Olabode, O.P. and San, L.H. (2023), "Analysis of soil electrical resistivity and hydraulic conductivity relationship for characterisation of lithology inducing slope instability in residual soil", Int. J. Geo-Eng., 14(1), 7.
  30. Parry, S., Baynes, F.J., Culshaw, M.G., Eggers, M., Keaton, J.F., Lentfer, K., Novotny, J. and Paul, D. (2014), "Engineering geological models: an introduction: IAEG commission 25", Bull. Eng. Geol. Environ., 73(3), 689-706. https://doi.org/10.1007/s10064-014-0576-x.
  31. Rajabian, A. (2023), "Effect of initial failure geometry on the progress of a retrogressive seepage-induced landslide", Int. J. Geo-Eng., 14(1), 11.
  32. Saidi, S., Bouri, S. and Dhia, H.B. (2010), "Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model", Environ. Earth Sci., 59(7), 1579-1588. https://doi.org/10.1007/s12665-009-0143-0.
  33. Sari, M. (2021), "Determination of representative elementary volume (REV) for jointed rock masses exhibiting scale-dependent behavior: a numerical investigation", Int. J. Geo-Eng., 12(1), 34.
  34. Shepard, D. (1968), "A two-dimensional interpolation function for irregularly spaced data", Proceedings of the 1968 23rd ACM National Conference. New York, NY, USA.
  35. Shirazi, S.M., Imran, H.M., Akib, S., Yusop, Z. and Harun, Z.B. (2013), "Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques", Environ. Earth Sci., 70(5), 2293-2304. https://doi.org/10.1007/s12665-013-2360-9
  36. Stephens, M.A. (1986), "Tests based on EDF statistics. Goodness-of-fit techniques", 68, 97-193. https://doi.org/10.1016/0304-3800(93)E0074-D.
  37. Taguchi, G. and Jugulum, R. (2002), "The Mahalanobis-Taguchi strategy: A pattern technology system", John Wiley & Sons. https://doi.org/10.1002/9780470172247.
  38. Taiwo, S. M. and Yoon, H. K. (2018), "Estimation of elastic wave velocity and DCPI distributions using outlier analysis", Eng. Geol., 247, 129-144. https://doi.org/10.1016/j.enggeo.2018.10.027.
  39. Thode, H.C. (2002), "Testing for normality" 164, CRC press, https://doi.org/10.2307/2332434.
  40. Tian, M., Li, D.Q., Cao, Z.J., Phoon, K.K. and Wang, Y. (2016), "Bayesian identification of random field model using indirect test data", Eng. Geol., 210, 197-211. https://doi.org/10.1016/j.enggeo.2016.05.013.
  41. Wang, C., Chuai, X., Shi, F., Gao, A. and Bao, T. (2018), "Experimental investigation of predicting rockburst using Bayesian model", Geomech. Eng., 15(6), 1153-1160. https://doi.org/12989.2018/gae.15.6.1153.
  42. Wang, J.B., Liu, X.R., Huang, Y.X. and Zhang, X.C. (2015), "Prediction model of surface subsidence for salt rock storage based on logistic function", Geomech. Eng., 9(1). 25-37. https://doi.org/10.12989/gae.2015.9.1.025.
  43. Wang, X., Wang, H., Liang, R.Y. and Liu, Y. (2019), "A semi-supervised clustering-based approach for stratification identification using borehole and cone penetration test data", Eng. Geol., 248, 102-116. https://doi.org/10.1016/j.enggeo.2018.11.014.
  44. Yasser, F., Altahrany, A. and Elmeligy, M. (2022), "Numerical investigation of the settlement behavior of hybrid system of floating stone columns and granular mattress in soft clay soil", Int. J. Geo-Eng., 13(1), 12.
  45. Yoon, S., Lee, S.R., Kim, Y.T. and Go, G.H. (2015), "Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis", Geomech. Eng., 9(1), 101-113. https://doi.org/10.12989/gae.2015.9.1.101.
  46. Zalina, M.D., Desa, M.N.M., Nguyen, V.T.A. and Kassim, A.H. M. (2002), "Selecting a probability distribution for extreme rainfall series in Malaysia", Water Sci. Technol., 45(2), 63-68. https://doi.org/10.2166/wst.2002.0028.