DOI QR코드

DOI QR Code

The role of wall configuration and reinforcement type in selecting the pseudo-static coefficients for reinforced soil walls

  • Received : 2022.11.09
  • Accepted : 2023.11.20
  • Published : 2023.12.10

Abstract

In the current study, a series of experimental and analytical evaluations were performed to introduce the horizontal pseudo static coefficient (kh) as a function of the wall configuration and the reinforcement type for analyzing reinforced soil walls. For this purpose, eight shaking table tests were performed on reduced-scale models of integrated and two-tiered walls reinforced by metal strip and geogrid to determine the distribution of dynamic lateral pressure in the walls. Then, the physical models were analyzed using Mononobe-Okabe method to estimate the value of kh required to establish the dynamic lateral pressures similar to those observed in shaking table tests. Based on the results, the horizontal pseudo static coefficient and the position of resultant lateral force (R) were introduced as a function of the horizontal peak ground acceleration (HPGA), the wall configuration, the reinforcement type as well as maximum wall displacement.

Keywords

Acknowledgement

The authors would like to thank of Prof. R.J. Bathurst, Prof. A. Ghalandarzade and Mr. M.A. Salimi for providing valuable assistance and also gratefully appreciate the support of the Centrifuge and Physical Modeling Center at Tehran University.

References

  1. Allen, T.M. Bathurst, R.J. (2014). "Performance of a 11 m high block-faced geogrid wall designed using the K-stiffness method", Can. Geotech. J., 51(1), 16-29. https://doi.org/10.1139/cgj-2013-0261.
  2. Altay, G., Kayadelen, C., Canakci, H., Bagriacik, B., Ok, B. and Oguzhanoglu, M.A. (2021), "Experimental investigation of deformation behavior of geocell retaining walls", Geomech. Eng., 27(5), 419-431. https://doi.org/10.12989/gae.2021.27.5.419.
  3. Bathurst, R.J. (1990), "Instrumentation of geogrid-reinforced soil wall", Transport. Res. Record, 1277, 102-111.
  4. Bathurst, R.J. and Cai, Z. (1995), "Pseudo-static analysis of geosynthetic-reinforced segmental retaining walls", Geosynth. Int., 2(5), 787-830. https://doi/abs/10.1680/gein.2.0037.
  5. Bathurst, R.J., Hatami, K. and Alfaro, M.C. (2012), Geosynthetic reinforced soil walls and slopes-seismic aspects. Handbook of Geosynthetic Engineering, Shukla, SK.
  6. Bathurst, R.J. and Hatami, K. (2020), "Earthquake response analysis of reinforced-soil walls using FLAC", In Flac and Numerical Modeling in Geomechanics CRC Press.
  7. Bathurst, R.J. and Naftchali, F.M. (2021), "Geosynthetic reinforcement stiffness for analytical and numerical modelling of reinforced soil structures", Geotext. Geomembranes, 49(4), 921-940. https://doi.org/10.1016/j.geotexmem.2021.01.003.
  8. Biondi, G., Cascone, E. and Maugeri, M. (2014), "Displacement versus pseudo-static evaluation of the seismic performance of sliding retaining walls", Bull. Earthq. Eng., 12(3), 1239-1267. https://doi.org/10.1007/s10518-013-9542-4.
  9. Cai, Z. and Bathurst, R.J. (1995), "Seismic response analysis of geosynthetic reinforced soil segmental retaining walls by finite element method", Comput. Geotech., 17(4), 523-546. https://doi.org/10.1016/0266-352X(95)94918-G.
  10. CEN (2004), "EN 1998-5: Eurocode 8: Design of structures for earthquake resistance. Part 5: foundations, retaining structures and geotechnical aspects", Brussels, Belgium.
  11. Choukeir, M. (1995), "Finite element analysis of reinforced earth and soil nailed structures under seismic loading", PhD thesis, Polytechnic University, New York.
  12. El-Emam, M.M. (2018), "Experimental verification of current seismic analysis methods of reinforced soil walls", Soil Dyn. Earthq. Eng., 113, 241-255. https://doi.org/10.1016/j.soildyn.2018.06.006.
  13. FHWA (2009), "Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes - Volume I, Federal Highway Administration Publication No. FHWA-NHI10-243", US Department of Transportation, Washington, DC, USA.
  14. Gaudio, D., Masini, L. and Rampello, S. (2018), "A performance-based approach to design reinforced-earth retaining walls", Geotext. Geomembranes, 46(4), 470-485. https://doi.org/10.1016/j.geotexmem.2018.04.003.
  15. Hatami, K. and Bathurst, R.J. (2000), "Effect of structural design on fundamental frequency of reinforced-soil retaining walls" Soil Dyn. Earthq. Eng., 19(3), 137-157. https://doi.org/10.1016/S0267-7261(00)00010-5.
  16. Hosseininia, H. and Ashjaee, A. (2018), "Numerical simulation of two-tier geosynthetic-reinforced-soil walls using two-phase approach", Comput. Geotech., 100, 15-29. https://doi.org/10.1016/j.compgeo.2018.04.003.
  17. Huang, C.C. and Wang, W.C. (2005), "Seismic displacement charts for the performance-based assessment of reinforced soil walls", Geosynth. Int., 12(4), 176-190. https://doi/10.1680/gein.2005.12.4.176.
  18. Huang, C.C. (2016), "Settlement of footings at the crest of reinforced slopes subjected to toe unloading", Geosynth. Int., 23(4), 247-256. https:// doi/10.1680/jgein.15.00045.
  19. Huang, C.C. (2019), "Seismic responses of vertical-faced wraparound reinforced soil walls", Geosynth. Int., 26(2), 146-163. https://doi/abs/10.1680/jgein.18.00044.
  20. Hong, Y.S., Chen, R.H., Wu, C.S. and Chen, J.R. (2005), "Shaking table tests and stability analysis of steep nailed slopes", Can. Geotech. J., 42(5), 1264-1279. https://doi.org/10.1139/T05-055.
  21. Iai, S. (1989), "Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field", Soils Found., 29(1), 105-118. https://doi.org/10.3208/sandf1972.29.105.
  22. Jamnani, A.R., Yazdandoust, M. and Sabermahani, M. (2023), "Effect of a two-tiered configuration on the seismic behaviour of reinforced soil walls", Geosynth. Int., 30(1), 3-28. https://doi.org/10.1680/jgein.22.00150.
  23. Jiang, Y., Han, J., Parsons, R.L. and Brennan, J.J. (2016), "Field instrumentation and evaluation of modular-block MSE walls with secondary geogrid layers", J. Geotech. Geoenviron. Eng., 142(12), 05016002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001573.
  24. Jin, H., Zhang, G. and Yang, Y. (2021), "Experimental and numerical study on behavior of retaining structure with limited soil", Geomech. Eng., 26(1), 77-88. https://doi.org/10.12989/gae.2021.26.1.077.
  25. Kahyaoglu, M.R. and Sahin, M. (2021), "Model studies on polymer strip reinforced soil retaining walls", Geomech. Eng., 25(5), 357-371. https://doi.org/10.12989/gae.2021.25.5.357.
  26. Komak Panah, A., Yazdi, M. and Ghalandarzadeh, A. (2015), "Shaking table tests on soil retaining walls reinforced by polymeric strips", Geotext Geomembranes, 43(2), 148-161. https://doi.org/10.1016/j.geotexmem.2015.01.001.
  27. Kongkitkul, W., Tatsuoka, F., Hirakawa, D., Sugimoto, T., Kawahata, S. and Ito, M. (2010), "Time histories of tensile force in geogrid arranged in two full-scale high walls", Geosynth. Int., 17(1), 12-32. https://doi.org/10.1680/gein.2010.17.1.12.
  28. Koseki, J., Tatsuoka, F., Munaf, Y., Tateyama, M. and Kojima, K. (1998), "A modified procedure to evaluate active earth pressure at high seismic loads", Soils Found., 38, 209-216. https://doi.org/10.3208/sandf.38.Special_209.
  29. Krishna, A.M. and Latha, G.M. (2009), "Seismic behavior of rigid-faced reinforced 567 soil retaining wall models: reinforcement effect", Geosynth. Int., 16(5), 364-373. https://doi/abs/10.1680/gein.2009.16.5.364.
  30. Krishna, A.M. and Latha, G.M. (2011), "Modeling the dynamic response of wrap-faced reinforced soil retaining walls", Int. J. Geomech., 12(4), 439-450. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000128.
  31. Kramer, S.L. (1996), "Geotechnical earthquake engineering", Prentice-Hall, Upper Saddle River, NJ.
  32. Kumar, J. and Rao, K.S. (1997), "Passive pressure coefficients, critical failure surface and its kinematic admissibility", Geotechnique, 47(1), 185-192. https://doi.org/10.1680/geot.1997.47.1.185.
  33. Leshchinsky, D., Ling, H.I., Wang, J.P., Rosen, A. and Mohri, Y. (2009), "Equivalent seismic coefficient in geocell retention systems", Geotext. Geomembranes, 27(1), 9-18. https://doi.org/10.1016/j.geotexmem.2008.03.001.
  34. Lee, M.G., Ha, J.G., Jo, S.B., Park, H.J. and Kim, D.S. (2017), "Assessment of horizontal seismic coefficient for gravity quay walls by centrifuge tests", Geotechnique Lett., 7(2), 211-217. https://doi/pdf/10.1680/jgele.17.00005.
  35. Lee, M.G., Ha, J.G., Cho, H.I., Sun, C.G. and Kim, D.S. (2021), "Improved performance-based seismic coefficient for gravity-type quay walls based on centrifuge test results", Acta Geotechnica, 16(4), 1187-1204. https://doi.org/10.1007/s11440-020-01086-5.
  36. Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413.
  37. Li, F.L., Ma, T.R. and Yang, Y.G. (2021), "Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls", Geomech. Eng., 25(3), 195-205. https://doi.org/10.12989/gae.2021.25.3.195.
  38. Liu, H., Yang, G. and Ling, H.I. (2014), "Seismic response of multi-tiered reinforced soil retaining walls", Soil Dyn. Earthq. Eng., 61, 1-12. https://doi.org/10.1016/j.soildyn.2014.01.012.
  39. Mollaei, R., Yazdandoust, M. and Askari, F. (2022), "Seismic evaluation of helical soil-nailed walls using shaking table testing", Soil Dyn. Earthq. Eng., 163, 107331. https://doi.org/10.1016/j.soildyn.2022.107331.
  40. Maced, J. and Candia, G. (2020), "Performance-based assessment of the seismic pseudo-static coefficient used in slope stability analysis", Soil Dyn. Earthq. Eng., 133, 106109. https://doi.org/10.1016/j.soildyn.2020.106109.
  41. MOF (2014), "Ports and fishing harbours design code", Sejong, Korea: Ministry of Oceans and Fisheries (in Korean).
  42. Safa, M., Maleka, A., Arjomand, M.A., Khorami, M. and Shariati, M. (2019), "Strain rate effects on soil-geosynthetic interaction in fine-grained soil", Geomech. Eng., 19(6), 533-542. https://doi.org/10.12989/gae.2019.19.6.533.
  43. Safaee, A.M., Mahboubi, A. and Noorzad, A. (2021), "Experimental investigation on the performance of multi-tiered geogrid mechanically stabilized earth (MSE) walls with wraparound facing subjected to earthquake loading", Geotext. Geomembranes, 49(1), 130-145. https://doi.org/10.1016/j.geotexmem.2020.08.008.
  44. Samee, A.A., Yazdandoust, M. and Ghalandarzadeh, A. (2021), "Performance of back-to-back MSE walls reinforced with steel strips under seismic conditions", Transport. Geotech., 30, 100540. https://doi.org/10.1016/j.trgeo.2021.100540.
  45. Samee, A.A., Yazdandoust, M. and Ghalandarzadeh, A. (2022), "Effect of reinforcement arrangement on dynamic behaviour of back-to-back mechanically stabilised earth walls", Int. J. Phys. Model. Geotech., 22(4), 208-223. https://doi.org/10.1680/jphmg.20.00088.
  46. Seed, H.B. and Whitman, R.V. (1970), "Design of earth retaining structures for dynamic loads", Proceedings of the special conference on lateral stresses in the ground and design of earth retaining structures.
  47. Segrestin, P. and Bastick, M.J. (1988), "Seismic design of reinforced earth retaining walls: the contribution of finite element analysis", Proceedings of the Int. Symp. on Theory and Practice of Earth Reinforcement, Kyushu, Japan.
  48. Seo, S., Lim, H. and Chung, M. (2021), "Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing", Geomech. Eng., 24(5), 457-470. https://doi.org/10.12989/gae.2021.24.5.457.
  49. Stuedlein, A.W., Bailey, M.J., Lindquist, D.D., Sankey, J. and Neely, W.J. (2010), "Design and performance of a 46-m-high MSE wall", J. Geotech. Geoenviron. Eng., 136(6), 786-796. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000294.
  50. Tatsuoka, F., Munoz, H., Kuroda, T., Nishikiori, H., Soma, R., Kiyota, T. and Watanabe, K. (2012), "Stability of existing bridges improved by structural integration and nailing", Soils Found., 52(3), 430-448. https://doi.org/10.1016/j.sandf.2012.05.004.
  51. Tufenkjian, M.R. and Vucetic, M. (2000), "Dynamic failure mechanism of soil-nailed excavation models in centrifuge", J. Geotech. Geoenviron. Eng., 126(3), 227-235. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(227).
  52. Viswanadham, B.V.S. and Konig, D. (2004), "Studies on scaling and instrumentation of a geogrid", Geotextiles Geomembranes, 22(5), 307-328. https://doi.org/10.1016/S0266-1144(03)00045-1.
  53. Viswanadham, B.V.S. and Mahajan, R.R. (2007), "Centrifuge model tests on geotextile-reinforced slopes", Geosynth. Int., 14(6), 365-379. https://doi/abs/10.1680/gein.2007.14.6.365.
  54. Watanabe, K., Munaf, Y., Koseki, J., Tateyama, M. and Kojima, K. (2003), "Behavior of several types of model retaining walls subjected to irregular excitation", Soils Found., 43(5), 13-27. https://doi.org/10.3208/sandf.43.5_13.
  55. White, D. and Take, A. (2002), "GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing", PhD thesis, University of Cambridge, Cambridge, UK.
  56. Won, M.S., Lee, O., Kim, Y.S. and Choi, S.K. (2016), "A 12-year long-term study on the external deformation behavior of Geosynthetic Reinforced Soil (GRS) walls", Geomech. Eng., 10(5), 565-575. https://doi.org/10.12989/gae.2016.10.5.565.
  57. Woodward, P.K. and Griffiths, D.V. (1996), "Comparison of the pseudo-static and dynamic behavior of gravity retaining walls", Geotech. Geol. Eng., 14(4), 269-290. https://doi.org/10.1007/BF00421944.
  58. Wood, D.M. (2004), "Geotechnical modeling", Version 2.2. London: Taylor & Francis Group.
  59. Xu, P., Hatami, K. and Jiang, G. (2020), "Shaking table study of the influence of facing on reinforced soil wall connection loads", Geosynth. Int., 27(4), 364-378. https://doi/full/10.1680/jgein.20.00001.
  60. Yadegari, S., Yazdandoust, M. and Momeniyan, M. (2023), "Performance of helical soil-nailed walls under bridge abutment", Transport. Geotechnics, 38, 100788. https://doi.org/10.1016/j.trgeo.2022.100788.
  61. Yazdandoust, M. (2017), "Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test", Soil Dyn. Earthq. Eng., 97, 216-232. https://doi.org/10.1016/j.soildyn.2017.03.011.
  62. Yazdandoust, M. (2018), "Laboratory evaluation of dynamic behavior of steel-strip mechanically stabilized earth walls", Soils Found., 58(2), 264-276. https://doi.org/10.1016/j.sandf.2018.02.016.
  63. Yazdandoust, M., Ghalandarzadeh, A. (2020), "Pseudo-static coefficient in reinforced soil structures". Int. J. Phys. Model. Geotech., 20(6), 320-337.
  64. Yazdandoust, M. and Bahrami, A. (2022), "Performance of two-tiered reinforced-soil retaining walls under strip footing load", Geotext. Geomembranes, 50(4), 545-565. https://doi.org/10.1016/j.geotexmem.2020.04.002.
  65. Yazdandoust, M., Samee, A.A. and Ghalandarzadeh, A. (2022), "Assessment of seismic behavior of back-to-back mechanically stabilized earth walls using 1g shaking table tests", Soil Dyn. Earthq. Eng., 155, 106078. https://doi.org/10.1016/j.soildyn.2020.106078.
  66. Yoshida, T. and Tatsuoka, F. (1990), "Deformation property of shear band in sand subjected to plane strain compression and its relation to particle characteristics", Proceedings of the 12th Int. Conf. Soil Mech. Found. Engng, Rio de Janeiro.
  67. Yoo, C. and Kim, S.B. (2008), "Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load: full-scale load test and 3D finite element analysis". Geotext Geomembranes, 26(6), 447518. https://doi.org/10.1016/j.geotexmem.2008.05.008.
  68. Yoo, C. (2018), "Serviceability state deformation behaviour of two-tiered geosynthetic reinforced soil walls", Geosynth. Int., 25(1), 12-25. https:// doi/10.1680/jgein.17.00030.
  69. Zarnani, S., El-Emam, M.M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., 3(4), 291-321. https://doi.org/10.12989/gae.2011.3.4.291.