DOI QR코드

DOI QR Code

젤라틴-잔골재 복합체의 공극률이 압축 강도에 미치는 영향

The Influence of Sand-Gelatin Composite Porosity on Compressive Strength

  • 박지윤 (고려대 건축사회환경공학과) ;
  • 이종구 (고려대 건축사회환경공학과)
  • Park, JiYoon (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yi, Chongku (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 투고 : 2023.08.24
  • 심사 : 2023.11.30
  • 발행 : 2023.12.31

초록

With a melting point at 30℃ and adhesive strength of 4.12MPa, the nontoxic and eco-friendly biopolymer gelatin finds frequent use in the food, pharmaceutical, and medical industries. Previous studies introduced gelatin as a component in the innovative concept of Living Building Material (LBM), but insufficient attention was given to porosity. This study explores the relationship between porosity and the compressive strength of gelatin-sand composite, aiming to understand how void space influences overall strength. Porosity was calculated by measuring the density of the entire specimen. The compressive strength increased by 18% as porosity decreased by 15% from the 7th day to the 14th day. Additionally, the adhesive strength of gelatin solution exhibited a 3.11 times increase from the first to the fourteenth day, similar to cement mortar. The compressive strength in the sand-gelatin composite improved by 18% due to the enhanced gelatin adhesive strength. Furthermore, SEM image analysis was conducted to observe the morphology of the sand-gelatin composite.

키워드

과제정보

이 연구는 2022년 한국연구재단 연구비 지원에 의한 결과의 일부임. 과제번호: NRF-2021R1A2C2009632

참고문헌

  1. Bussemer, T., Dashevsky, A., & Bodmeier, R. (2003). A pulsatile drug delivery system based on rupturable coated hard gelatin capsules. Journal of Controlled Release, 93(3), 331-339.  https://doi.org/10.1016/j.jconrel.2003.08.012
  2. Cardoso, G. P., Dutra, M. P., Fontes, P. R., Ramos, A. d. L. S., de Miranda Gomide, L. A., & Ramos, E. M. (2016). Selection of a chitosan gelatin-based edible coating for color preservation of beef in retail display. Meat Science, 114, 85-94.  https://doi.org/10.1016/j.meatsci.2015.12.012
  3. Cen, S., Yu, W., Yang, W., Lou, Q., & Huang, T. (2022). Reversibility of the gel, rheological, and structural properties of alcohol pretreated fish gelatin: Effect of alcohol types. Journal of Texture Studies, 53(2), 266-276.  https://doi.org/10.1111/jtxs.12626
  4. Day, R. L., & Marsh, B. K. (1988). Measurement of porosity in blended cement pastes. Cement and Concrete Research, 18(1), 63-73.  https://doi.org/10.1016/0008-8846(88)90122-6
  5. Djabourov, M., Lechaire, J.-P., & Gaill, F. (1993). Structure and rheology of gelatin and collagen gels. Biorheology, 30(3-4), 191-205.  https://doi.org/10.3233/BIR-1993-303-405
  6. El-Hassan, H., & Ismail, N. (2018). Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. Journal of Sustainable Cement-Based Materials, 7(2), 122-140.  https://doi.org/10.1080/21650373.2017.1411296
  7. Flower, D. J., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. The international Journal of life cycle assessment, 12, 282-288.  https://doi.org/10.1065/lca2007.05.327
  8. Gartner, E. (2004). Industrially interesting approaches to "low-CO2" cements. Cement and Concrete research, 34(9), 1489-1498.  https://doi.org/10.1016/j.cemconres.2004.01.021
  9. Gomez-Guillen, M., Perez-Mateos, M., Gomez-Estaca, J., Lopez-Caballero, E., Gimenez, B., & Montero, P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 20(1), 3-16.  https://doi.org/10.1016/j.tifs.2008.10.002
  10. Hess, K. M., & Srubar Iii, W. V. (2015). Mechanical Characterization of Gelatin-Flax Natural-Fiber Composites for Construction. Journal of Renewable Materials, 3(3), 175-182. https://doi.org/10.7569/jrm.2015.634106 
  11. Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of cleaner production, 17(7), 668-675.  https://doi.org/10.1016/j.jclepro.2008.04.007
  12. IDSON, B., & BRASWELL, E. (1960). Some Problems of the Gelation of Gelatin. In. ACS Publications. 
  13. Kudrolli, A. (2008). Sticky sand. Nature materials, 7(3), 174-175.  https://doi.org/10.1038/nmat2131
  14. Liu, L., Kerry, J., & Kerry, J. (2007). Application and assessment of extruded edible casings manufactured from pectin and gelatin/sodium alginate blends for use with breakfast pork sausage. Meat Science, 75(2), 196-202.  https://doi.org/10.1016/j.meatsci.2006.07.008
  15. Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601-605.  https://doi.org/10.1016/j.cemconcomp.2008.12.010
  16. Mo, X., Iwata, H., Matsuda, S., & Ikada, Y. (2000). Soft tissue adhesive composed of modified gelatin and polysaccharides. Journal of Biomaterials Science, Polymer Edition, 11(4), 341-351.  https://doi.org/10.1163/156856200743742
  17. Pacheco-Torgal, F., Ivanov, V., Karak, N., & Jonkers, H. (2016). Biopolymers and biotech admixtures for eco-efficient construction materials. Woodhead Publishing.
  18. Park, J., & Yi, C. (2023). Material Properties of Eco-friendly Composite Using Gelatin as an Organic Binder according to the Mix Proposition. Journal of the Architectural Institute of Korea, 39(2), 279-285.  https://doi.org/10.5659/JAIK.2023.39.2.279
  19. Pezron, I., Djabourov, M., Bosio, L., & Leblond, J. (1990). X-ray diffraction of gelatin fibers in the dry and swollen states. Journal of Polymer Science Part B: Polymer Physics, 28(10), 1823-1839.  https://doi.org/10.1002/polb.1990.090281013
  20. Qiu, J., Artier, J., Cook, S., Srubar III, W. V., Cameron, J. C., & Hubler, M. H. (2021). Engineering living building materials for enhanced bacterial viability and mechanical properties. IScience, 24(2), 102083. 
  21. Westman, A. R., & Hugill, H. (1930). The packing of particles 1. Journal of the american ceramic society, 13(10), 767-779.  https://doi.org/10.1111/j.1151-2916.1930.tb16222.x
  22. Wittmann, F. H., & Balkema, A. (1992). Advances in autoclaved aerated concrete. Citeseer. 
  23. Wu, H.-C., & Sun, P. (2010). Effect of Mixture Compositions on Workability and Strength of Fly Ash-Based Inorganic Polymer Mortar. ACI Materials Journal, 107(6). 
  24. Zhao, X., Lang, Q., Yildirimer, L., Lin, Z. Y., Cui, W., Annabi, N., Ng, K. W., Dokmeci, M. R., & Amemiya, T. (1985). Advanced Econometrics, Cambridge, Harvard University Press, 135.