DOI QR코드

DOI QR Code

The responses of battered pile to tunnelling at different depths relative to the pile length

  • Mukhtiar Ali Soomro (School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Naeem Mangi (School of Civil Engineering, Southwest Jiaotong University) ;
  • Dildar Ali Mangnejo (Department of Civil Engineering, Mehran University of Engineering and Technology, Shaheed Zulfiqar Ali Bhutto Campus) ;
  • Zongyu Zhang (School of Civil Engineering, Southwest Jiaotong University)
  • Received : 2023.09.26
  • Accepted : 2023.11.23
  • Published : 2023.12.25

Abstract

Population growth and urbanization prompted engineers to propose more sophisticated and efficient transportation methods, such as underground transit systems. However, due to limited urban space, it is necessary to construct these tunnels in close proximity to existing infrastructure like high-rise buildings and bridges. Battered piles have been widely used for their higher stiffness and bearing capacity compared to vertical piles, making them effective in resisting lateral loads from winds, soil pressures, and impacts. Considerable prior research has been concerned with understanding the vertical pile response to tunnel excavation. However, the three-dimensional effects of tunnelling on adjacent battered piled foundations are still not investigated. This study investigates the response of a single battered pile to tunnelling at three critical depths along the pile: near the pile shaft (S), next to the pile (T), and below the pile toe (B). An advanced hypoplastic model capable of capturing small strain stiffness is used to simulate clay behaviour. The computed results reveal that settlement and load transfer mechanisms along the battered pile, resulting from tunnelling, depend significantly on the tunnel's location relative the length of the pile. The largest settlement of the battered pile occurs in the case of T. Conversely, the greatest pile head deflection is caused by tunnelling near the pile shaft. The battered pile experiences "dragload" due to negative skin friction mobilization resulting from tunnel excavation in the case of S. The battered pile is susceptible to induced bending moments when tunnelling occurs near the pile shaft S whereas the magnitude of induced bending moment is minimal in the case of B.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support provided by Quaid-e-Awam University of Engineering, Science & Technology, Sindh and Pakistan.

References

  1. Al-Tabbaa, A. (1987), Permeability and stress-strain response of Speswhite Kaolin, PhD thesis. UK, University of Cambridge.
  2. Abrams, A.J. (2007), Earth pressure balance (EPB) tunneling induced settlements in the Tren Urbano Project, Rio Piedras, Puerto Rico MEng thesis. Massachusetts Institute of Technology. 
  3. Benz, T. (2007), Small-strain stiffness and its numerical consequences, PhD thesis. Universitat Stuttgart. 
  4. Bharathi, M., Dubey, R.N. and Shukla, S.K. (2022), "Numerical simulation of the dynamic response of batter piles and pile groups", Bul. Earthq. Eng., 20(7), 3239-3263. https://doi.org/10.1007/s10518-022-01362-7. 
  5. Boonsiri, I. and Takemura, J. (2015), "Observation of ground movement with existing pile groups due to tunneling in sand using centrifuge modelling", Geotech. Geol. Eng., 33, 621-640. https://doi.org/10.1007/s10706-015-9845-0. 
  6. Boonyarak, T., Phisitkul, K., Ng, C.W.W., Teparaksa, W. and Aye, Z.Z. (2014), "Observed ground and pile group responses due to tunneling in Bangkok stiff clay", Can.Geotech. J., 51(5), 479-495. https://doi.org/10.1139/cgj-2013-0082. 
  7. Cheng, C.Y., Dasari, G.R., Chow, Y.K. and Leung, C.F. (2007), "Finite element analysis of tunnel-soil-pile interaction using displacement controlled model", Tunn. Undergr. Sp. Tech., 22(4), 450-466. https://doi.org/10.1016/j.tust.2006.08.002. 
  8. Coutts, D.R. and Wang, J. (2000), "Monitoring of reinforced concrete piles under horizontal and vertical loads", Proceeding of the International Conference on Tunnels and Underground Structures, Singapore. 
  9. Ding, Z., Wei, X.J. and Wei, G. (2017), "Prediction methods on tunnel-excavation induced surface settlement around adjacent building", Geomech. Eng., 12(2), 185-195. https://doi.org/10.12989/gae.2017.12.2.185. 
  10. Franza, A. and Marshall, A.M. (2018), "Centrifuge modeling study of the response of piled structures to tunneling", J. Geotech. Geoenviron. Eng., 144(2), 04017109. https://doi.org/10.1061/(ASCE)GT.1943-5606.000175. 
  11. Forth, R.A. and Thorley, C.B.B. (1996), "Hong Kong Island line predictions and performance", Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London. Balkema, Rotterdam, The Netherlands. 
  12. Gasparre, A. (2005), "Advanced laboratory characterisation of London Clay", Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of London. 
  13. Hibbitt, Karlsson, Sorensen. (2015), Abaqus user's manual, version 6.14-2. Providence, RI, USA: Hibbitt, Karlsson & Sorensen Inc. 
  14. Huang, M., Zhang, C. and Li, Z.A. (2009), "A simplified analysis method for the influence of tunnelling on grouped piles", Tunn. Undergr. Sp. Tech., 24(4), 410-422. https://doi.org/10.1016/j.tust.2008.11.005. 
  15. Hong, Y., Soomro, M.A. and Ng, C.W.W. (2015), "Settlement and load transfer mechanism of pile group due to side-by-side twin tunneling", Comput. Geotech., 64, 105-119. https://doi.org/10.1016/j.compgeo.2014.10.007. 
  16. Jamil, I. and Ahmad, I. (2019), "Bending moments in raft of a piled raft system using Winkler analysis", Geomech. Eng., 18(1), 41-48. https://doi.org/10.12989/gae.2019.18.1.041. 
  17. Indraratna, B., Balasubramaniam, A.S., Phamvan, P. and Wong, Y.K. (1992), "Development of negative skin friction on driven piles in soft Bangkok clay", Can. Geotech. J., 29, 393-404. https://doi.org/10.1139/t92-044. 
  18. ISSMFE (1985), Axial pile loading test - Part I: Static loading. ASTM 8, 79-80.  https://doi.org/10.1520/GTJ10514J
  19. Jacobsz, S.W., Bowers, K.H., Moss, N.A. and Zanardo, G. (2006), "The effects of tunnelling on piled structures on the CTRL. In: Geotechnical aspects of underground construction in soft ground", Proceedings of the 5th international symposium TC28. Amsterdam, the Netherlands, 15-17 June 2005. 
  20. Karira, H., Kumar, A., Ali, T.H., Mangnejo, D.A. and Mangi, N. (2022), "A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis", Geomech. Eng., 30(2), 169-185. https://doi.org/10.12989/gae.2022.30.2.169. 
  21. Lee, C.J. and Chiang K.H. (2007), "Responses of single piles to tunnelling-induced soil movements in sandy ground", Can. Geotech. J., 44, 1224-1241. https://doi.org/10.1139/T07-050. 
  22. Lee, C.J. (2012a), "Numerical analysis of the interface shear transfer mechanism of a single pile to tunnelling in weathered residual soil", Comput. Geotech., 42, 193-203. https://doi.org/10.1016/j.compgeo.2012.01.009. 
  23. Lee, C.J. (2012b), "Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock", Tunn. Undergr. Sp. Tech., 32, 132-142. https://doi.org/10.1016/j.tust.2012.06.005. 
  24. Lee, G.T.K. and Ng, C.W.W. (2005), "The effects of advancing open face tunneling on an existing loaded pile", J. Geotech. Geoenviron. Eng. - ASCE, 131(2), 193-201. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(193). 
  25. Lee, C.J. (2013), "Numerical analysis of pile response to open face tunnelling in stiff clay", Comput. Geotech., 51, 116-127. https://doi.org/10.1016/j.compgeo.2013.02.007. 
  26. Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413. 
  27. Li, H., Liu, S., Yan, X., Gu, W. and Tong, L. (2021), "Effect of loading sequence on lateral soil-pile interaction due to excavation", Comput. Geotech., 134, 104134. https://doi.org/10.1016/j.compgeo.2021.104134. 
  28. Li, H., Liu, S. and Tong, L. (2022), "A numerical interpretation of the soil-pile interaction for the pile adjacent to an excavation in clay", Tunn. Undergr. Sp. Tech., 121, 104344. https://doi.org/10.1016/j.tust.2021.104344. 
  29. Loganathan, N., Poulos, H.G. and Stewart, D.P. (2000), "Centrifuge model testing of tunnelling-induced ground and pile deformations", Geotechnique, 50, 283-294. https://doi.org/10.1680/geot.2000.50.3.283. 
  30. Loganathan, N., Poulos, H.G. and Xu, K.J. (2001), "Ground and pile group responses due to tunneling", Soils Found., 41(1), 57-67. https://doi.org/10.3208/sandf.41.57. 
  31. Liu, M., Meng, F., Chen, R., Cheng, H. and Li, Z. (2023), "Numerical study on the lateral soil arching effect and associated tunnel responses behind braced excavation in clayey ground", Transport. Geotech., 40, 100970. https://doi.org/10.1016/j.trgeo.2023.100970. 
  32. Lu, H., Shi, J., Ng, C.W.W. and Lv, Y. (2020), "Three-dimensional centrifuge modeling of the influence of side-by-side twin tunneling on a piled raft", Tunn. Undergr. Sp. Tech., 103, 103486. https://doi.org/10.1016/j.tust.2020.103486. 
  33. Mair, R.J. and Taylor, R.N. (1997), "Bored tunnelling in the urban environment. State-of-the-art Report and Theme Lecture", Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Balkema. 
  34. Marshall, A.M. and Mair, R.J. (2011), "Tunneling beneath driven or jacked end-bearing piles in sand", Can. Geotech. J., 48(12), 1757-1771. https://doi.org/10.1139/t11-067. 
  35. Marshall, A.M. (2012), "Tunnel-pile interaction analysis using cavity expansion methods", J. Geotech. Gooenviron. Eng., 138(10), 1237-1246. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000709. 
  36. Masin, D. (2005), "A hypoplastic constitutive model for clays", Int. J. Numer. Anal. Meth. Geomech., 29(4), 311-336. https://doi.org/10.1002/nag.416. 
  37. Masin, D. and Herle, I. (2005), "State boundary surface of a hypoplastic model for clays", Comput. Geotech., 32(6), 400-410. https://doi.org/10.1016/j.compgeo.2005.09.001. 
  38. Mayne, P. and Kulhawy, F. (1982), "K0-OCR relationships in soils", J. Geotech. Eng. - ASCE, 108(6), 851-872.  https://doi.org/10.1061/AJGEB6.0001306
  39. Meguid, M.A., Saada, O., Nunes, M.A. and Mattar, J. (2008), "Physical modeling of tunnels in soft ground: a review", Tunn. Undergr. Sp. Tech., 23(2),185-198. https://doi.org/10.1016/j.tust.2007.02.003. 
  40. Mroueh, H. and Shahrour, I. (2002), "Three-dimensional finite element analysis of the interaction between tunnelling and pile foundations", Int. J. Numer. Anal. Method. Geomech., 26(3), 217-230. https://doi.org/10.1002/nag.194. 
  41. Mu, L., Huang, M., Roodi, G.H. and Shi, Z. (2021), "Allowable wall deflection of braced excavation adjacent to pile-supported buildings", Geomech. Eng., 26(2), 161-173. https://doi.org/10.12989/gae.2021.26.2.161. 
  42. Ng, C.W.W., Lu, H. and Peng, S.Y. (2013), "Three-dimensional centrifuge modelling of effects of twin tunnelling on as existing pile", Tunn. Undergr. Sp. Tech., 35, 189-199. https://doi.org/10.1016/j.tust.2012.07.008. 
  43. Ng, C.W.W. nad Lu, H, (2013), "Effects of construction sequence of twin tunnelling at different depth on a single pile", Can. Geotech. J., 51(2), 173-183. https://doi.org/10.1139/cgj-2012-0452. 
  44. Ng, C.W.W., Soomro, M.A. and Hong, Y. (2014), "Three-dimensional centrifuge modelling of pile group responses to side-by-side twin tunneling", Tunn. Undergr. Sp. Tech., 43, 350-361. https://doi.org/10.1016/j.tust.2014.05.002. 
  45. Ng, C.W.W., Hong, Y. and Soomro, M.A. (2015), "Effects of piggyback twin tunnelling on a pile group: 3D centrifuge tests and numerical modelling", Geotechnique, 65(1), 38-51. https://doi.org/10.1680/geot.14.P.105. 
  46. Niemunis, A. and Herle, I. (1997), "Hypoplastic model for cohesionless soils with elastic strain range", Mech. Cohesive-Frict. Mater., 2(4), 279-299. https://doi.org/10.1002/(SICI)10991484(199710)2:4<279::AIDCFM29>3.0.CO;2-8. 
  47. Pang, C.H., Yong, K.Y. and Chow, Y.K. (2005), Three dimensional numerical simulation of tunnel advancement on adjacent pile foundation. Underground Space Use: Analysis of the Past and Lessons for the Future (Eds., Y. Erdem and T. Solak), 1141-1147. London: Taylor and Francis. 
  48. Parry, R.H.G. and Nadarajah, V. (1974), "Observations on laboratory prepared, lightly overconsolidated specimens of kaolin", Geotechnique, 24(3) 345-358. https://doi.org/10.1680/geot.1974.24.3.345. 
  49. Powrie, W. (1986), The behavior of diaphragm walls in clay, Ph.D. thesis. University of Cambridge, UK. 
  50. Poulos, H.G. (2001), "Piled raft foundations: Design and applications", Geotechnique, 51(2), 95-113. https://doi.org/10.1680/geot.2001.51.2.95. 
  51. Qian, J., Tong, Y., Mu, L., Lu, Q. and Zhao, H. (2020), "A displacement controlled method for evaluating ground settlement induced by excavation in clay", Geomech. Eng., 20(4), 275-285. https://doi.org/10.12989/gae.2020.20.4.275. 
  52. Selemetas, D. (2005), The response of full-scale piles and pile structures to tunneling. Ph.D. thesis, Cambridge University. 
  53. Shi, J., Fu, Z. and Guo, W. (2019a), "Investigation of geometric effects on three-dimensional tunnel deformation mechanisms due to basement excavation", Comput. Geotech., 106, 108-116. https://doi.org/10.1016/j.compgeo.2018.10.019. 
  54. Shi, J., Wei, J., Ng, C.W.W. and Lu, H. (2019b), "Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand", Comput. Geotech., 116, 103216. https://doi.org/10.1016/j.compgeo.2019.103216. 
  55. Shi, J., Ding, C., Ng, C.W.W., Lu, H. and Chen, L. (2020), "Effects of overconsolidation ratio on tunnel responses due to overlying basement excavation in clay", Tunn. Undergr. Sp. Tech., 97, 103247. https://doi.org/10.1016/j.tust.2019.103247. 
  56. Shi, J., Wang, J., Chen, Y., Shi, C., Lu, H., Ma, S. and Fan, Y. (2023), "Physical modeling of the influence of tunnel active face instability on existing pipelines", Tunn. Undergr. Sp. Tech., 140, 105281. https://doi.org/10.1016/j.tust.2023.105281. 
  57. Shirlaw, J.N., Ong, J.C.W., Rosser, H.B., Tan, C.G., Osborne, N.H. and Heslop, P.E. (2003), "Local settlements and sinkholes due to EPB tunneling", Geotech. Eng., 156(4), 193-211. https://doi.org/10.1680/geng.2003.156.4.193. 
  58. Soomro, M.A., Hong, Y., Ng, C.W.W., Lu, H. and Peng, S.Y. (2015), "Load transfer mechanism in pile group due to single tunnel advancement in stiff clay", Tunn. Undergr. Sp. Tech., 45, 63-72. https://doi.org/10.1016/j.tust.2014.08.001. 
  59. Soomro, M.A., Ng, C.W.W., Liu, H. and Memon, N.A. (2017), "Pile responses to side-by-side twin tunnelling in stiff clay: Effects of different tunnel depths relative to pile", Comput. Geotech., 84, 101-116. https://doi.org/10.1016/j.compgeo.2016.11.011. 
  60. Soomro, M.A., Kumar, M., Xiong, H., Mangnejo, D.A. and Mangi, N. (2020), "Investigation of effects of different construction sequences on settlement and load transfer mechanism of single pile due to twin stacked tunneling", Tunn. Undergr. Sp. Tech., 96, 103171. https://doi.org/10.1016/j.tust.2019.103171. 
  61. Soomro, M.A., Mangi, N., Memon, A.H. and Mangnejo, D.A. (2022), "Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles", Geomech. Eng., 29(1), 25-40. https://doi.org/10.12989/gae.2022.29.1.025. 
  62. Tsubakihara, Y. and Kishida, H. (1993), "Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses", Soils Found., 33(2), 1-13. https://doi.org/10.3208/sandf1972.33.2_1. 
  63. Ye, X.W., Zhang, X.L., Zhang, H.Q., Ding, Y. and Chen, Y.M. (2023), "Prediction of lining upward movement during shield tunneling using machine learning algorithms and field monitoring data", Transport. Geotech., 41, 101002. https://doi.org/10.1016/j.trgeo.2023.101002. 
  64. Zhang, R.J., Zheng, J.J., Zhang, L.M. and Pu, H.F. (2011), "An analysis method for the influence of tunneling on adjacent loaded pile groups with rigid elevated caps", Int. J. Numer. Anal. Method. Geomech., 35(18), 1949-1971. https://doi.org/10.1002/nag.989.