DOI QR코드

DOI QR Code

Effects of lactic acid bacteria fermented feed and three types of lactic acid bacteria (L. plantarum, L. acidophilus, B. animalis) on intestinal microbiota and T cell polarization (Th1, Th2, Th17, Treg) in the intestinal lymph nodes and spleens of rats

  • Da Yoon, Yu (Division of Animal Science, Gyeongsang National University) ;
  • Sang-Hyon, Oh (Division of Animal Science, Gyeongsang National University) ;
  • In Sung, Kim (Division of Animal Science, Gyeongsang National University) ;
  • Gwang Il, Kim (Division of Animal Science, Gyeongsang National University) ;
  • Jeong A, Kim (Division of Animal Science, Gyeongsang National University) ;
  • Yang Soo, Moon (Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University) ;
  • Jae Cheol, Jang (Division of Animal Science, Gyeongsang National University) ;
  • Sang Suk, Lee (Department of Animal Science and Technology, Sunchon National University) ;
  • Jong Hyun, Jung (Jung P&C Institute) ;
  • Hwa Chun, Park (Dasan Genetics) ;
  • Kwang Keun, Cho (Division of Animal Science, Gyeongsang National University)
  • Received : 2022.08.05
  • Accepted : 2022.09.16
  • Published : 2023.01.01

Abstract

Objective: In this study, we investigated the effects of Rubus coreanus-derived lactic acid bacteria (LAB) fermented feed (RC-LAB fermented feed) and three types of LAB (Lactobacillus plantarum, Lactobacillus acidophilus, Bifidobacterium animalis) on the expression of transcription factors and cytokines in Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens of rats. In addition, the effect on intestinal microbiota composition and body weight was investigated. Methods: Five-week-old male rats were assigned to five treatments and eight replicates. The expression of transcription factors and cytokines of Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens was analyzed using real-time reverse transcriptase polymerase chain reaction assays. Intestinal tract microbiota compositions were analyzed by next-generation sequencing and quantitative polymerase chain reaction assays. Results: RC-LAB fermented feed and three types of LAB increased the expression of transcription factors and cytokines in Th1, Treg cells and Galectin-9, but decreased in Th2 and Th17 cells. In addition, the intestinal microbiota composition changed, the body weight and Firmicutes to Bacteroidetes (F/B) ratio decreased, and the relative abundance of LAB increased. Conclusion: LAB fermented feed and three types of LAB showed an immune modulation effect by inducing T cell polarization and increased LAB in the intestinal microbiota.

Keywords

Acknowledgement

This research was supported by the Economic Cooperation Industrial Development Project (No. R0005730), Ministry of Trade, Industry, and Energy, Korea.

References

  1. Ma Y, Ma S, Chang L, et al. Gut microbiota adaptation to high altitude in indigenous animals. Biochem Biophys Res Commun 2019;516:120-6. https://doi.org/10.1016/j.bbrc.2019.05.085
  2. De Clercq NC, Groen AK, Romijn JA, Nieuwdorp M. Gut microbiota in obesity and undernutrition. Adv Nutr 2016;7:1080-9. https://doi.org/10.3945/an.116.012914
  3. Vinderola G, Ouwehand A, Salminen S, von Wright A. Lactic acid bacteria: Microbiological and functional aspects. Boca Raton, FL, USA: CRC Press; 2019.
  4. Raheem A, Liang L, Zhang G, Cui S. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front Immunol 2021;12:616713. https://doi.org/10.3389/fimmu.2021.616713
  5. Zeng W, Shen J, Bo T, et al. Cutting Edge: Probiotics and fecal microbiota transplantation in immunomodulation. J Immunol Res 2019;2019:1603758. https://doi.org/10.1155/2019/1603758
  6. Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol Immunol 2021;18:1161-71. https://doi.org/10.1038/s41423-020-00625-0
  7. Kim HW, Hong R, Choi EY, et al. A probiotic mixture regulates T cell balance and reduces atopic dermatitis symptoms in mice. Front Microbiol 2018;9:2414. https://doi.org/10.3389/fmicb.2018.02414
  8. Om AS, Song YN, Noh GM, Kim HR, Choe JS. Nutrition composition and single, 14-day and 13-week repeated oral dose toxicity studies of the leaves and stems of Rubus coreanus Miquel. Molecules 2016;21:65. https://doi.org/10.3390/molecules21010065
  9. Yu DY, Kim SH, Kim JA, et al. Effects of Rubus coreanus byproducts on intestinal microbiota and the immune modulation. Asian-Australas J Anim Sci 2018;31:429-38. https://doi.org/10.5713/ajas.17.0733
  10. de Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Bacteriol 1960;23:130-5. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  11. Jeon YS, Park SC, Lim J, Chun J, Kim BS. Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform. J Microbiol 2015;53:60-9. https://doi.org/10.1007/s12275-015-4601-y
  12. Zafar H, Saier M. Gut Bacteroides species in health and disease. Gut Microbes 2021;13:1848158. https://doi.org/10.1080/19490976.2020.1848158
  13. Kim KJ, Jeong ES, Lee KH, et al. Unripe Rubus coreanus miquel extract containing ellagic acid promotes lipolysis and thermogenesis in vitro and in vivo. Molecules 2020;25:5954. https://doi.org/10.3390/molecules25245954
  14. Hric I, Ugrayova S, Penesova A, et al. The Efficacy of short-term weight loss programs and consumption of natural probiotic Bryndza cheese on gut microbiota composition in women. Nutrients 2021;13:1753. https://doi.org/10.3390/nu13061753
  15. Takahashi S, Anzawa D, Takami K, et al. Effect of Bifidobacterium animalis ssp. lactis GCL2505 on visceral fat accumulation in healthy Japanese adults: a randomized controlled trial. Biosci Microbiota Food Health 2016;35:163-71. https://doi.org/10.12938/bmfh.2016-002
  16. Sousa R, Halper J, Zhang J, et al. Effect of Lactobacillus acidophilus supernatants on body weight and leptin expression in rats. BMC Complement Altern Med 2008;8:5. https://doi.org/10.1186/1472-6882-8-5
  17. Cheng YC, Liu JR. Effect of Lactobacillus rhamnosus GG on energy metabolism, leptin resistance, and gut microbiota in mice with diet-induced obesity. Nutrients 2020;12:2557. https://doi.org/10.3390/nu12092557
  18. Sharma R, Kapila R, Dass G, Kapila S. Improvement in Th1/ Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. AGE 2014;36:9686. https://doi.org/10.1007/s11357-014-9686-4
  19. Kim WK, Jang YJ, Han DH, et al. Lactobacillus paracasei KBL382 administration attenuates atopic dermatitis by modulating immune response and gut microbiota. Gut Microbes 2020;12:1819156. https://doi.org/10.1080/19490976.2020.1819156
  20. Moya-Perez A, Neef A, Sanz Y. Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One 2015;10:e0126976. https://doi.org/10.1371/journal.pone.0126976
  21. Marras L, Caputo M, Bisicchia S, et al. The Role of Bifido-bacteria in predictive and preventive medicine: A focus on eczema and hypercholesterolemia. Microorganisms 2021;9:836. https://doi.org/10.3390/microorganisms9040836
  22. Blidner AG, Mendez-Huergo SP, Cagnoni AJ, Rabinovich GA. Re-wiring regulatory cell networks in immunity by galectin-glycan interactions. FEBS Lett 2015;589:3407-18. https://doi.org/10.1016/j.febslet.2015.08.037
  23. Kim HW, Ju DB, Kye YC, et al. Galectin-9 induced by dietary probiotic mixture regulates immune balance to reduce atopic dermatitis symptoms in mice. Front Immunol 2019;10:3063. https://doi.org/10.3389/fimmu.2019.03063
  24. Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 2004;4:249-59. https://doi.org/10.1038/nri1329
  25. Houtman TA, Eckermann HA, Smidt H, de Weerth C. Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Sci Rep 2022;12:3140. https://doi.org/10.1038/s41598-022-07176-6
  26. Reed AD, Nethery MA, Stewart A, Barrangou R, Theriot CM. Strain-dependent inhibition of Clostridioides difficile by commensal Clostridia carrying the bile acid-inducible (bai) Operon. J Bacteriol 2020;202:e00039-20. https://doi.org/10.1128/JB.00039-20
  27. Marco ML, Sanders ME, Ganzle M, et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol 2021;18:196-208. https://doi.org/10.1038/s41575-020-00390-5
  28. Dempsey E, Corr SC. Lactobacillus spp. for gastrointestinal health: Current and future perspectives. Front Immunol 2022;13:840245. https://doi.org/10.3389/fimmu.2022.840245
  29. de Leon AV, Jahnes BC, Duan J, Camuy-Velez LA, Sabree ZL. Cultivable, host-specific Bacteroidetes symbionts exhibit diverse polysaccharolytic strategies. Appl Environ Microbiol 2020;86:e00091-20. https://doi.org/10.1128/AEM.00091-20
  30. Amat S, Lantz H, Munyaka PM, Benjamin P. Willing BP. Prevotella in pigs: The positive and negative associations with production and health. Microorganisms 2020;8:1584. https://doi.org/10.3390/microorganisms8101584
  31. Radka CD, Frank MW, Rock CO, Yao J. Fatty acid activation and utilization by Alistipes finegoldii, a representative Bacteroidetes resident of the human gut microbiome. Mol Microbiol 2020;113:807-25. https://doi.org/10.1111/mmi.14445
  32. Oh NS, Joung JY, Lee JY, et al. Glycated milk protein fermented with Lactobacillus rhamnosus ameliorates the cognitive health of mice under mild-stress condition. Gut Microbes 2020;11:1643-61. https://doi.org/10.1080/19490976.2020.1756690
  33. Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gomez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab 2012;61:160-74. https://doi.org/10.1159/000342079
  34. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of gut microbiota in the aetiology of obesity: Proposed mechanisms and review of the literature. J Obes 2016;2016:7353642. https://doi.org/10.1155/2016/7353642/