DOI QR코드

DOI QR Code

Comparison of rectum fecal bacterial community of finishing bulls fed high-concentrate diets with active dry yeast and yeast culture supplementation

  • 투고 : 2022.05.29
  • 심사 : 2022.08.14
  • 발행 : 2023.01.01

초록

Objective: The objective of this study was to investigate the effects of feeding active dry yeast (ADY) and yeast culture (YC) on fecal bacterial community in finishing bulls fed high-concentrate diets in the same experimental environment. Methods: Forty-five healthy finishing cattle (Simmental×Chinese Luxi yellow bulls; 24 months; 505±29 kg) were randomly divided into three groups: i) CON group (control group, only fed basal diet), ii) ADY group (fed basal diet + active dry yeast), and iii) YC group (fed basal diet + yeast culture). At the end of the trial, nine rectum fecal samples were randomly selected from each group for bacterial DNA sequencing. Results: There was no difference among groups about alpha diversity indices (all p>0.05), including ACE, Chao 1, Shannon, and Simpson indices. Principal component analysis and non-metric multidimensional scaling analysis showed a high similarity among three groups. Compared with CON group, ADY and YC groups had greater relative abundance of c_Clostridia, o_Oscillospirales, and f_Oscillospiraceae, but lesser relative abundance of g_Megasphaera, and s_Megasphaera_elsdenii (all p<0.01). And, the relative abundances of p_Firmicutes (p = 0.03), s_Prevotella_sp (p = 0.03), o_Clostridiales (p<0.01), g_Clostridium (p<0.01), f_Caloramatoraceae (p<0.01), and f_Ruminococcaceae (p = 0.04) were increased in the ADY group. The PICRUSt2 prediction results showed that the metabolic pathways had no significant differences among groups (p>0.05). Besides, the relative abundance of c_Clostridia (r = 0.42), and f_Oscillospiraceae (r = 0.40) were positively correlated to average daily gain of finishing bulls (p<0.05). Conclusion: Both of ADY and YC had no effect on diversity of fecal bacteria in finishing bulls, but the supplementation of ADY and YC can improve the large intestinal function in finishing bulls by increasing the abundance of cellulolytic bacteria and altering the abundance of lactic acid-utilizing bacteria.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (grant number 32060763; 31660669) and Jilin Science and Technology Development Program (grant number YDZJ202203CGZH042; 20220202048NC).

참고문헌

  1. Malmuthuge N, Guan LL. Understanding host-microbial interactions in rumen: searching the best opportunity for microbiota manipulation. J Anim Sci Biotechnol 2017;8:8. https://doi.org/10.1186/s40104-016-0135-3
  2. Van Soest PJ. Nutritional ecology of the ruminant. Ithaca, NY, USA: Cornell University Press; 1994.
  3. Godoy-Vitorino F, Goldfarb KC, Karaoz U, et al. Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J 2012;6:531-41. https://doi.org/10.1038/ismej.2011.131
  4. Mao S, Zhang R, Wang D, Zhu W. The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res 2012;8:237. https://doi.org/10.1186/1746-6148-8-237
  5. Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 2011;8:36-45. https://doi.org/10.1038/nchembio.741
  6. Shurson GC. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Anim Feed Sci Technol 2018; 235:60-76. https://doi.org/10.1016/j.anifeedsci.2017.11.010
  7. Geng CY, Ren LP, Zhou ZM, Chang Y, Meng QX. Comparison of active dry yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits, meat quality and blood indexes in finishing bulls. Anim Sci J 2016;87:982-8. https://doi.org/10.1111/asj.12522
  8. Swyers KL, Wagner JJ, Dorton KL, Archibeque SL. Evaluation of Saccharomyces cerevisiae fermentation product as an alternative to monensin on growth performance, cost of gain, and carcass characteristics of heavy-weight yearling beef steers. J Anim Sci 2014;92:2538-45. https://doi.org/10.2527/jas.2013-7559
  9. Hinman DD, Sorensen SJ, Momont PA, Albin R, Cole NA. Effect of yeast culture on steer performance, apparent diet digestibility, and carcass measurements when used in a barley and potato finishing diet. Prof Anim Sci 1998;14:173-7. https://doi.org/10.15232/S1080-7446(15)31819-2
  10. Geng CY, Feng X, Luan JM, Ji S, Jin YH, Zhang M. Improved tenderness of beef from bulls supplemented with active dry yeast is related to matrix metalloproteinases and reduced oxidative stress. Animal 2022;16:100517. https://doi.org/10.1016/j.animal.2022.100517
  11. Wiedmeier RD, Arambel MJ, Walters JL. Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. J Dairy Sci 1987;70:2063-8. https://doi.org/10.3168/jds.S0022-0302(87)80254-0
  12. Shen Y, Wang H, Ran T, Yoon I, Saleem AM, Yang W. Influence of yeast culture and feed antibiotics on ruminal fermentation and site and extent of digestion in beef heifers fed high grain rations. J Anim Sci 2018;96:3916-27. https://doi.org/10.1093/jas/sky249
  13. Amin AB, Mao S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: a review. Anim Nutr 2021;7:31-41. https://doi.org/10.1016/j.aninu.2020.10.005
  14. Bach A, Lopez-Garcia A, Gonzalez-Recio O, et al. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. J Dairy Sci 2019;102:6180-98. https://doi.org/10.3168/jds.2018-16105
  15. Ran T, Shen Y, Saleem AM, AlZahal O, Beauchemin KA, Yang W. Using ruminally protected and nonprotected active dried yeast as alternatives to antibiotics in finishing beef steers: growth performance, carcass traits, blood metabolites, and fecal Escherichia coli. J Anim Sci 2018;96:4385-97. https://doi.org/10.1093/jas/sky272
  16. Ran T, Jiao P, AlZahal O, et al. Fecal bacterial community of finishing beef steers fed ruminally protected and non-protected active dried yeast. J Anim Sci 2020;98:skaa058. https://doi.org/10.1093/jas/skaa058
  17. Geng CY, Ji S, Jin YH, et al. Comparison of blood immunity, antioxidant capacity and hormone indexes in finishing bulls fed active dry yeast (Saccharomyces cerevisiae) and yeast culture. Int J Agric Biol 2018;20:2561-8. https://doi.org/10.17957/IJAB/15.0822
  18. Klemetsen T, Willassen NP, Karlsen CR. Full-length 16S rRNA gene classification of Atlantic salmon bacteria and effects of using different 16S variable regions on community structure analysis. Microbiology Open 2019;8:e898. https://doi.org/10.1002/mbo3.898
  19. Yuan X, Zhang X, Liu X, et al. Comparison of gut bacterial communities of grapholita molesta (Lepidoptera: Tortricidae) reared on different host plants. Int J Mol Sci 2021;22:6843. https://doi.org/10.3390/ijms22136843
  20. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 2014;30:3123-4. https://doi.org/10.1093/bioinformatics/btu494
  21. Ogunade I, Schweickart H, McCoun M, Cannon K, McManus C. Integrating 16S rRNA sequencing and LC-MS-based metabolomics to evaluate the effects of live yeast on rumen function in beef cattle. Animals 2019;9:28. https://doi.org/10.3390/ani9010028
  22. Buchl NR, Hutzler M, Mietke-Hofmann H, Wenning M, Scherer S. Differentiation of probiotic and environmental Saccharomyces cerevisiae strains in animal feed. J Appl Microbiol 2010;109:783-91. https://doi.org/10.1111/j.1365-2672.2010.04705.x
  23. Vohra A, Syal P, Madan A. Probiotic yeasts in livestock sector. Anim Feed Sci Technol 2016;219:31-47. https://doi.org/10.1016/j.anifeedsci.2016.05.019
  24. Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev 1986;50:484-524. https://doi.org/10.1128/mr.50.4.484-524.1986
  25. Lewis JD, Ruemmele FM, Wu GD. Nutrition, gut microbiota and immunity: therapeutic targets for IBD. Concluding remarks. Nestle Nutr Inst Workshop Ser 2014;79:161-2. https://doi.org/10.1159/000360721
  26. Rivera-Chavez F, Zhang LF, Faber F, et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe 2016; 19:443-54. https://doi.org/10.1016/j.chom.2016.03.004
  27. Yale CE, Balish E. The importance of clostridia in experimental intestinal strangulation. Gastroenterology 1976;71:793-6. https://doi.org/10.1016/S0016-5085(76)80362-9
  28. Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria - From metagenomic species to metabolic features. Environ Microbiol 2017;19:835-41. https://doi.org/10.1111/1462-2920.13658
  29. Mackie Roderick I, Aminov Rustam I, Hu W, et al. Ecology of uncultivated oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol 2003;69:6808-15. https://doi.org/10.1128/AEM.69.11.6808-6815.2003
  30. Chen YR, Zheng HM, Zhang GX, Chen F, Chen L, Yang Z. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Sci Rep 2020;10:9364. https://doi.org/10.1038/s41598-020-66369-z
  31. Magalhaes VJA, Susca F, Lima FS, Branco AF, Yoon I, Santos JEP. Effect of feeding yeast culture on performance, health, and immunocompetence of dairy calves. J Dairy Sci 2008;91:1497-509. https://doi.org/10.3168/jds.2007-0582
  32. Galvao KN, Santos JEP, Coscioni A, et al. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod Nutr Dev 2005;45:427-40. https://doi.org/10.1051/rnd:2005040
  33. Ji M, Du H, Xu Y. Structural and metabolic performance of p-cresol producing microbiota in different carbon sources. Food Res Int 2020;132:109049. https://doi.org/10.1016/j.foodres.2020.109049
  34. Chaucheyras-Durand F, Walker ND, Bach A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim Feed Sci Technol 2008;145:5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
  35. Ogunade IM, Lay J, Andries K, McManus CJ, Bebe F. Effects of live yeast on differential genetic and functional attributes of rumen microbiota in beef cattle. J Anim Sci Biotechnol 2019;10:68. https://doi.org/10.1186/s40104-019-0378-x
  36. Lesmeister KE, Heinrichs AJ, Gabler MT. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J Dairy Sci 2004;87:1832-9. https://doi.org/10.3168/jds.S0022-0302(04)73340-8
  37. Hammes WP, Vogel RF. The genus Lactobacillus. In: Wood BJB, Holzapfel WH, editors. The genera of lactic acid bacteria. Boston, MA, USA: Springer US; 1995. p. 19-54.
  38. Gressley TF, Hall MB, Armentano LE. Ruminant Nutrition Symposium: Productivity, digestion, and health responses to hindgut acidosis in ruminants. J Anim Sci 2011;89:1120-30. https://doi.org/10.2527/jas.2010-3460
  39. Sanz-Fernandez MV, Daniel J-B, Seymour DJ, et al. Targeting the hindgut to improve health and performance in cattle. Animals 2020;10:1817. https://doi.org/10.3390/ani10101817
  40. Faniyi TO, Adegbeye MJ, Elghandour MMMY, et al. Role of diverse fermentative factors towards microbial community shift in ruminants. J Appl Microbiol 2019;127:2-11. https://doi.org/10.1111/jam.14212
  41. Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 2014;9:e85423. https://doi.org/10.1371/journal.pone.0085423
  42. Myer PR, Smith TPL, Wells JE, Kuehn LA, Freetly HC. Rumen microbiome from steers differing in feed efficiency. PLoS One 2015;10:e0129174. https://doi.org/10.1371/journal.pone.0129174
  43. Thoetkiattikul H, Mhuantong W, Laothanachareon T, et al. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr Microbiol 2013;67:130-7. https://doi.org/10.1007/s00284-013-0336-3
  44. Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities. Diversity 2013;5:627-40. https://doi.org/10.3390/d5030627
  45. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107:14691-6. https://doi.org/10.1073/pnas.1005963107
  46. Liu J, Zhang M, Xue C, Zhu W, Mao S. Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants. J Dairy Sci 2016;99:9668-81. https://doi.org/10.3168/jds.2016-11398
  47. Geervliet M, de Vries H, Jansen CA, et al. Effects of Escherichia coli Nissle 1917 on the porcine gut microbiota, intestinal epithelium and immune system in early life? Front Microbiol 2022;13:842437. https://doi.org/10. 3389/fmicb.2022.842437 https://doi.org/10.3389/fmicb.2022.842437
  48. Molbak L, Klitgaard K, Jensen Tim K, Fossi M, Boye M. Identification of a novel, invasive, not-yet-cultivated treponema sp. in the large intestine of pigs by PCR amplification of the 16S rRNA gene. J Clin Microbiol 2006;44:4537-40. https://doi.org/10.1128/JCM.01537-06
  49. Schrank K, Choi BK, Grund S, et al. Treponema brennaborense sp. nov., a novel spirochaete isolated from a dairy cow suffering from digital dermatitis. Int J Syst Bacteriol 1999;49:43-50. https://doi.org/10.1099/00207713-49-1-43
  50. Seymour WM, Nocek JE, Siciliano-Jones J. Effects of a colostrum substitute and of dietary brewer's yeast on the health and performance of dairy calves. J Dairy Sci 1995;78:412-20. https://doi.org/10.3168/jds.S0022-0302(95)76650-4
  51. Durso LM, Harhay GP, Smith TPL, et al. Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl Environ Microbiol 2010;76:4858-62. https://doi.org/10.1128/AEM.00207-10
  52. Kim M, Kim J, Kuehn LA, et al. Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci 2014;92:683-94. https://doi.org/10.2527/jas.2013-6841
  53. Shanks OC, Kelty CA, Archibeque S, et al. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 2011;77:2992-3001. http://doi.org/10.1128/AEM.02988-10
  54. Hernandez-Sanabria E, Goonewardene LA, Wang Z, Durunna ON, Moore SS, Guan LL. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl Environ Microbiol 2012;78:1203-14. https://doi.org/10.1128/AEM.05114-11
  55. Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol 2016;24:402-13. https://doi.org/10.1016/j.tim.2016.02.002
  56. Groves JT, Kuriyan J. Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol 2010;17:659-65. https://doi.org/10.1038/nsmb.1844