DOI QR코드

DOI QR Code

Core-shell TiO2/Ag Nanoparticle Synthesis and Characterization for Conductive Paste

전도성 페이스트용 코어-쉘 TiO2/Ag 나노입자의 합성 및 특성 연구

  • Sang-Bo, Sim (Changsung Nanotech Co., Ltd.) ;
  • Jong-Dae, Han (School of Smart Green Engineering, Changwon National University)
  • 심상보 (창성나노텍(주)) ;
  • 한종대 (창원대학교 공과대학 스마트그린공학부)
  • Received : 2022.12.18
  • Accepted : 2022.12.29
  • Published : 2023.02.10

Abstract

Core-shell TiO2/Ag nanoparticles were synthesized by a modified sol-gel process and the reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane. The structure, shape, and size of the TiO2/Ag nanoparticles were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), and thermogravimetric analysis (TGA). The size of TiO2/Ag nanoparticles could be controlled by changing the [water]/[DDBA] molar ratio values. The size and the polydispersity of TiO2/Ag nanoparticles increased when the [water]/[DDBA] molar ratio rose. The resultant Ag nanoparticles over the anatase crystal TiO2 nanoparticles exhibited a strong surface plasmon resonance (SPR) peak at about 430 nm. The SPR peak shifted to the red side with the increase in nanoparticle size. Conductive pastes with 70 wt% TiO2/Ag nanoparticles were prepared, and the pastes were coated on the PET films using a screen-printing method. The printed paste films of the TiO2/Ag nanoparticles demonstrated greater surface resistance than conventional Ag paste in the range of 405~630 μΩ/sq.

코어-쉘 TiO2/Ag 나노입자를 수정된 졸-겔 공정과 함께 acetoxime을 환원제로 사용한 물/dodecylbenzenesulfonic acid (DDBA)/cyclohexane의 역 미셀 방법으로 합성하였다. 합성된 TiO2/Ag 나노입자의 구조, 형태 및 크기를 XRD, UV-visible spectroscopy, SEM, TEM 및 TGA를 이용하여 조사하였다. TiO2/Ag 나노입자의 크기는 [물]/[DDBA]의 몰비를 조절하여 제어할 수 있었다. TiO2/Ag 나노입자의 크기와 다분산성은 [물]/[DDBA]의 몰비가 증가함에 따라 증가하였다. 아나타제 결정상의 TiO2 나노입자 위에 생성된 Ag 나노입자는 430 nm 주변에서 강한 표면 플라즈몬 공명(SPR) 흡수 특성을 나타내었다. SPR 피크는 나노입자 크기의 증가에 따라 장파장으로의 적색 이동이 나타났다. 70 wt% 조성으로 TiO2/Ag 나노입자를 분산시켜 전도성 페이스트를 제조하고, 스크린 인쇄법으로 PET 필름에 코팅하여 전도성을 조사하였다. TiO2/Ag 나노입자 페이스트로 코팅된 필름은 상용 Ag 페이스트의 경우보다 높은 405~630 μΩ/sq 영역의 표면저항을 나타내었다.

Keywords

Acknowledgement

이 논문은 2021~2022년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구결과임.

References

  1. J. R. Camargo, L. O. Orzari, D. A. G. Araujo, P. R. d. Oliveira, C. Kalinke , D. P. Rocha, A. L. d. Santos, R. M. Takeuchi, R. A. A. Munoz, J. A. Bonacin, and B. C. Janegitz, Development of conductive inks for electrochemical sensors and biosensors, Microchem. J., 164, 105998 (2021).
  2. J.-X. Wu, C.-P. Chu, and Y.-C. Liao, Solderable conductive paste for electronic textiles, J. Taiwan Inst. Chem. Eng., 142, 104616 (2023).
  3. Y. Z. N. Htwe and M. Mariatti, Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges, J. Sci.: Adv. Mater. Devices, 7, 100435 (2022).
  4. D. Tsakona, I. Theodorakos, A. Kalaitzis, and I. Zergioti, Investigation on high speed laser printing of silver nanoparticle inks on flexible substrates, Appl. Surf. Sci., 513, 145912 (2020).
  5. Y. Yang, N. Bai, T. Cao, X. Zhang, Y. Gao, J. Zhang, P. Zhao, and J. Huang, Numerical and experimental investigations on intense pulsed light sintering of silver nanoparticle inks for printed electronics, Int. J. Therm. Sci., 176, 117507 (2022).
  6. N. Ibrahim, J. O. Akindoyo, and M. Mariatti, Recent development in silver-based ink for flexible electronics, J. Sci.: Adv. Mater. Devices, 7, 100395 (2022).
  7. T. Liu, J. Zhao, D. Luo, Z. Xu, X. Liu, H. Ning, J. Chen, J. Zhong, R. Yao, and J. Peng, Inkjet printing high performance flexible electrodes via a graphene decorated Ag ink, Surf. Interfaces, 28, 101609 (2022).
  8. J. H. Sohn, L. Q. Pham, H. S. Kang, J. H. Park, B. C. Lee, and Y. S. Kang, Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation, Radiat. Phys. Chem., 79, 1149-1153 (2010). https://doi.org/10.1016/j.radphyschem.2010.06.005
  9. A. Pajor-Swierzy, K. Szczepanowicz, A. Kamyshny, and S. Magdassi, Metallic core-shell nanoparticles for conductive coatings and printing, Adv. Colloid Interface Sci., 299, 102578 (2022).
  10. X.-W. Han, X.-F. Zeng, J. Zhang, H. Huan, J.-X. Wang, N. R. Foster, and J.-F. Chen, Synthesis of transparent dispersion of monodispersed silver nanoparticles with excellent conductive performance using high-gravity technology, Chem. Eng. J., 296, 182-190 (2016). https://doi.org/10.1016/j.cej.2016.03.076
  11. S. S. Chawhan, D. P. Barai, and B. A. Bhanvase, Investigation on thermophysical properties, convective heat transfer and performance evaluation of ultrasonically synthesized Ag-doped TiO2 hybrid nanoparticles based highly stable nanofluid in a minichannel, Therm. Sci. Eng. Prog., 25, 100928 (2021).
  12. S. K. Soylu, I. Atmaca, M. Asilturk, and A. Dogan, Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based nanofluids, Appl. Therm. Eng., 157, 113745 (2019).
  13. J. Singh, B. Satpati, and S. Mohapatra, Structural, OPTICAL and plasmonic properties of Ag-TiO2 hybrid plasmonic nanostructures with enhanced photocatalytic activity, Plasmonics, 12, 877-888 (2017). https://doi.org/10.1007/s11468-016-0339-6
  14. H. Ran, J. Fan, X. Zhang, J. Mao, and G. Shao, Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites, Appl. Surf. Sci., 430, 415-423 (2018). https://doi.org/10.1016/j.apsusc.2017.07.107
  15. K. Balachandran, T. Kalaivani, D. Thangaraju , S. Mageswari , M.S. V. Senan, and A. Preethi, Fabrication of photoanodes using sol-gel synthesized Ag-doped TiO2 for enhanced DSSC efficiency, Mater. Today: Proc., 37, 515-521 (2021). https://doi.org/10.1016/j.matpr.2020.05.485
  16. Y. X. Dong, X. L. Wang, E. M. Jin, S. M. Jeong, B. Jin, and S. H. Lee, One-step hydrothermal synthesis of Ag decorated TiO2 nanoparticles for dye-sensitized solar cell application, Renew. Energ., 135, 1207-1212 (2019). https://doi.org/10.1016/j.renene.2018.12.062
  17. K. Balachandran, T. Kalaivani, D. Thangaraju, S. Mageswari, M. S. V. Senan, and A. Preethi, Fabrication of photoanodes using sol-gel synthesized Ag-doped TiO2 for enhanced DSSC efficiency, Mater. Today: Proc., 37, 515-521 (2021). https://doi.org/10.1016/j.matpr.2020.05.485
  18. Y. X. Dong, X. L. Wang, E. M. Jin, S. M. Jeong, B. Jin, and S. H. Lee, One-step hydrothermal synthesis of Ag decorated TiO2 nanoparticles for dye-sensitized solar cell application, Renew. Energ., 135, 1207-1212 (2019). https://doi.org/10.1016/j.renene.2018.12.062
  19. D.-H. Yoon, M. R. U. D. Biswas, and A. Sakthisabarimoorthi, Enhancement of photoelectrochemical activity by Ag coating on black TiO2 nanoparticles, Mater. Chem. Phys., 291, 126675 (2022).
  20. Y. Li, H. Wu, H. Chen, Q. Huang, L. Cai, Y. Du, S. Liu, Z. Sheng, and J. Gao, Surface enhanced Raman effect of Ag/TiO2 thin films with arbitrarily cut, flexible and reusable performance, Optik, 185, 510-514 (2019). https://doi.org/10.1016/j.ijleo.2019.03.154
  21. K. Nanaji, R. K. S. K. Janardhana, T. N. Rao, and S. Anandan, Energy level matching for efficient charge transfer in Ag doped - Ag modified TiO2 for enhanced visible light photocatalytic activity, J. Alloys Compd., 794, 662-671 (2019). https://doi.org/10.1016/j.jallcom.2019.04.283
  22. G. K. Hassan, W. H. Mahmoud, A. Al-sayed, S. H. Ismail, A. A. El-Sherif, and S. M. A. d. E. Wahab, Multi-functional of TiO2@Ag core-shell nanostructure to prevent hydrogen sulfide formation during anaerobic digestion of sewage sludge with boosting of bio-CH4 production, Fuel, 333, 126608 (2023).
  23. M. Michalska, J. Pavlovsky, K. Lemanski, M. Malecka, M. Ptak, V. Novak, M. Kormunda, and V. Matejka, The effect of surface modification with Ag nanoparticles on 21 nm TiO2: anatase/rutile material for application in photocatalysis, Mater. Today Chem., 26, 101123 (2022).
  24. E. Alikhaidarova, D. Afanasyev, and N. Ibrayev, Electrical properties of nanocomposite materials based on PEDOT:PSS polymer mixture doped with Ag, Ag-TiO2 and Ag-SiO2 nanoparticles, Mater. Today: Proc., 25, 28-32 (2020). https://doi.org/10.1016/j.matpr.2019.11.011
  25. S.-B. Sim and J.-D. Han, Synthesis of SiO2/Ag core-shell nanoparticles for conductive paste application, Appl. Chem. Eng., 32, 28-34 (2020). https://doi.org/10.14478/ACE.2020.1101
  26. S.-B. Sim and J.-D. Han, Sonochemical synthesis of copper-silver core-shell particles for conductive paste application, Appl. Chem. Eng., 29, 782-788 (2018). https://doi.org/10.14478/ACE.2018.1097
  27. S.-H. Chen, S.-H. Chan, Y.-T. Lin, and M.-C. Wu, Enhanced power conversion efficiency of perovskite solar cells based on mesoscopic Ag-doped TiO2 electron transport layer, Appl. Surf. Sci., 469, 18-26 (2019). https://doi.org/10.1016/j.apsusc.2018.10.256
  28. S. Mondal and D. Basak, Plasmon assisted high ultraviolet to visible broad band photosensitivity in lateral Ag NPs-TiO2 nanocomposite film, Surf. Interfaces, 31, 102090 (2022).
  29. R. Lakra, R. Kumar, S. Kumar, D. Thatoi, and A. Soam, Synthesis of TiO2 nanoparticles as electrodes for supercapacitor, Mater. Today: Proc., https://doi.org/10.1016/j.matpr.2022.11.271.
  30. K. Rajangam, S. Amuthameena, S. Thangavel, V.S. Sanjanadevi, and B. Balraj, Synthesis and characterisation of Ag incorporated TiO2 nanomaterials for supercapacitor applications, J. Mol. Struct., 1219, 128661 (2020).
  31. K. I. Dhanalekshmi and K. S. Meena, Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 887-890 (2014). https://doi.org/10.1016/j.saa.2014.02.063
  32. D. Wang, B. Zhang, H. Ding, D. Liu, J. Xiang, X. J. Gao, X. Chen, Z. Li, L. Yang, H. Duan, J. Zheng, Z. Liu, B. Jiang, Y. Liu, N. Xie, H. Zhang, X. Yan, K. Fan, and G. Nie, TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2, Nano Today, 40, 101243 (2021)
  33. S. Das, K. Saxena, L. P. Goswami, J. Gayathri, and D. S. Mehta, Mesoporous Ag-TiO2 based nanocage like structure as sensitive and recyclable low-cost SERS substrate for biosensing applications, Opt. Mater., 125, 111994 (2022).
  34. Z. Wang, A. A. Haidry, L. Xie, A. Zavabeti, Z. Li, W. Yin, R. L. Fomekong, and B. Saruhan, Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method, Appl. Surf. Sci., 533, 147383 (2020).
  35. V. V. Lysak, Optical properties of core/shell nanoparticles: Comparison of TiO2/Ag and Ag/TiO2 structures, Mater. Today: Proc., 4, 4890-4895 (2017). https://doi.org/10.1016/j.matpr.2017.04.091
  36. W. Y. Padron-Hernandez, M. C. Ceballos-Chuc, D. Pourjafari, G. Oskam, J. C. Tinoco, A. G. Martinez-Lopez, and G. Rodriguez-Gattorno, Stable inks for inkjet printing of TiO2 thin films, Mater. Sci. Semicond. Process, 81, 75-81 (2018). https://doi.org/10.1016/j.mssp.2018.03.015
  37. K. Solanki, D. Parmar, C. Savaliya, S. Kumar, and S. Jethva, Surface morphology and optical properties of sol-gel synthesized TiO2 nanoparticles: Effect of Co, Pd and Ni-doping, Mater. Today: Proc., 50, 2576-2580 (2022). https://doi.org/10.1016/j.matpr.2021.10.182
  38. M. Yalcin, The effect of pH on the physical and structural properties of TiO2 nanoparticles, J. Cryst. Growth, 585, 126603 (2022).
  39. U. Sirisha, B. Sowjanya, H. R. Anjum, T. Punugoti, A. Mohamed, and M. Vangalapati, Synthesized TiO2 nanoparticles for the application of photocatalytic degradation of synthetic toxic dye acridine orange, Mater. Today: Proc., 62, 3444-3449 (2022). https://doi.org/10.1016/j.matpr.2022.04.278
  40. J. Noh, M. Yi, S. Hwang, K. M. Im, T. Yu, and J. Kim, A facile synthesis of rutile-rich titanium oxide nanoparticles using reverse micelle method and their photocatalytic applications, J. Ind. Eng. Chem., 33, 369-373 (2016). https://doi.org/10.1016/j.jiec.2015.10.020
  41. T. Tatarchuk, N. Danyliuk, A. Shyichuk, W. Macyk, and M. Naushad, Photocatalytic degradation of dyes using rutile TiO2 synthesized by reverse micelle and low temperature methods: real- time monitoring of the degradation kinetics, J. Mol. Liq., 342, 117407 (2021).
  42. O. Pryshchepa, P. Pomastowski, and B. Buszewski, Silver nanoparticles: Synthesis, investigation techniques, and properties, Adv. Colloid Interface Sci., 284, 102246 (2020).
  43. W. Li, X. Xu, W. Li, P. Liu, Y. Zhao, Q.g Cen, and M. Chen, One-step synthesis of Ag nanoparticles for fabricating highly conductive patterns using infrared sintering, J. Mater. Res. Technol., 9, 142-151 (2020). https://doi.org/10.1016/j.jmrt.2019.10.039
  44. J. Eastoe, M. J. Hollamby, and L. Hudson, Recent advances in nanoparticle synthesis with reversed micelles, Adv. Colloid Interface Sci., 128-130, 5-15 (2006). https://doi.org/10.1016/j.cis.2006.11.009
  45. D. Singha, N. Barman, and K. Sahu, A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature, J. Colloid Interface Sci., 413, 37-42 (2014). https://doi.org/10.1016/j.jcis.2013.09.009
  46. T. Kiba, K. Masui, Y. Inomata, A. Furumoto, M. Kawamura, Y. Abe, and K. H. Kim, Control of localized surface plasmon resonance of Ag nanoparticles by changing its size and morphology, Vacuum, 19, 110432 (2021).
  47. F. Ghanbary and A. Jafarian, Preparation and photocatalytic properties of silver doped titanium dioxide nanoparticles and using artificial neural network for modeling of photocatalytic activity, Aust. J. Basic Appl. Sci., 5, 2889-2898 (2011).
  48. R. Desai, V. Mankad, S. K. Gupta, and P. K. Jha, Size distribution of silver nanoparticles: UV-visible spectroscopic assessment, Nanosci. Nanotechnol. Lett., 4, 30-34 (2012). https://doi.org/10.1166/nnl.2012.1278
  49. A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol, Physica E: Low Dimens. Syst. Nanostruct., 27, 104-112 (2005). https://doi.org/10.1016/j.physe.2004.10.014
  50. A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol, Mater. Res. Bull., 43, 90-96 (2008). https://doi.org/10.1016/j.materresbull.2007.02.013
  51. C. Xu, W.-j. Li, Y.-m. Wei, and X.-y. Cui, Characterization of SiO2/Ag composite particles synthesized by in situ reduction and its application in electrically conductive adhesives, Mater. Des., 83, 745-752 (2015). https://doi.org/10.1016/j.matdes.2015.06.036
  52. P. S. Popovetskiya and D.I. Beketovaa, Silver nanoparticles stabilized by AOT and Tergitol NP-4 mixture: Influence of composition on electrophoretic concentration, properties of concentrated organosols and conductivity of films, Colloids Surf. A, 568, 51-58 (2019). https://doi.org/10.1016/j.colsurfa.2019.01.074
  53. Z. Moradi, K. Akhbari, A. Phuruangrat, and F. Costantino, Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor, J. Mol. Struct., 1133, 172-178 (2017). https://doi.org/10.1016/j.molstruc.2016.12.001
  54. S. I. Mogal, V. G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P. A. Joshi, and D. O. Shah, Single-step synthesis of silver-doped titanium dioxide: Influence of silver on structural, textural, and photocatalytic properties, Ind. Eng. Chem. Res., 53, 5749-5758 (2014). https://doi.org/10.1021/ie404230q