DOI QR코드

DOI QR Code

Properties of De/Anti-icing Fluid for High Speed Railway Rolling Stock Based on Propylene-glycol Containing Water Repellent Agent

발수 성분을 포함하는 프로필렌글리콜(PG) 기반 고속철도차량용 제·방빙액의 특성

  • Received : 2022.12.27
  • Accepted : 2023.01.25
  • Published : 2023.02.10

Abstract

As a chemical de-icing method, propylene glycol de-icing fluid is applicable for melting ice caused by snow and ice adhering to the lower part of high-speed rail rolling stock and bogie parts in winter. By spraying propylene-glycol de-icing fluid on high-speed rail rolling stock and bogie parts in advance to minimize snow adhesion, ice-melting efficiency can be further improved. In the case of high-speed rail rolling stock, even if propylene-glycol de-icing fluid is sprayed, the anti-icing performance is poor because the fluid is almost lost on the surface of the vehicle when operating at high speed. In this study, in order to prevent freezing caused by snow and ice adhering to the lower part of high-speed rail rolling stock and bogie parts, we have investigated the properties of propylene-glycol de/anti-icing fluid containing water-repellent agents that prevent surface freezing. We tried to find the optimal component for de/anti-icing fluid for high-speed rail rolling stock by evaluating the ice melting performance, contact angle, and anti-icing performance according to the types of water-repellent agent. As a result of the evaluation, it was confirmed that an de/anti-icing fluid containing an ethoxysilane-type water repellent agent was most suitable.

화학적 제빙 방법으로 프로필렌글리콜 제빙액은 동절기 고속철도차량 하부 및 대차부에 부착되는 설빙으로 인한 결빙을 녹이는데 적용가능하다. 프로필렌글리콜 제빙액을 운행 전 고속철도차량에 철도차량 하부 및 대차부에 미리 살포하여 눈의 부착을 최소화하면 해빙 효율을 더 높일 수 있다. 고속철도의 경우 프로필렌글리콜 제빙액을 살포하여도 고속으로 운행 시 대차 표면에서 제빙액은 거의 소실되기 때문에 눈의 부착으로 인한 결빙에 대한 방빙성능은 떨어진다. 본 연구에서는 동절기 고속철도차량 하부 및 대차부에 부착되는 설빙으로 인한 결빙을 방지하기 위해 표면의 결빙을 방지하는 발수 성분을 포함하는 프로필렌글리콜 제·방빙액의 특성을 연구하였다. 발수제의 종류에 따른 점도, 융빙성능, 접촉각 및 방빙성능에 대한 비교 평가를 실시하여 고속철도차량 제·방빙액으로 최적의 물질을 찾고자 하였다. 평가 결과 에톡시실란 타입의 발수제 성분을 포함하는 제·방빙액이 가장 적합한 것으로 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 철도기술연구사업 "Anti-icing 기반 동절기 피해예방 기술 개발" 과제의 연구비 지원으로 수행되었습니다. (22RTRP-B146024-05)

References

  1. F. Xie, J. Zhang, G. Gao, K. Zhang, and J. Wang, Study of snow accumulation on a high-speed train's bogies based on the discrete phase model, J. Appl. Fluid Mech., 10, 1729-1745 (2017). https://doi.org/10.29252/jafm.73.245.27410
  2. J. Wang, J. Zhang, F. Xie, and Y. Zhang, A study of snow accumulating on the bogie and the effects of deflectors on the deicing performance in the bogie region of a high-speed train, Cold Reg. Sci. Technol., 148, 121-130 (2018). https://doi.org/10.1016/j.compscitech.2018.02.022
  3. H.-B. Gwon, B.-S. Kim, and K.-J. Yee, Study on relationship between weather condition and window glass damage by accreted snow for high-speed train, J. Korean Soc. Railway, 23, 135-142 (2020). https://doi.org/10.7782/jksr.2020.23.2.135
  4. H.-B. Gwon, A study on the running speed control according to the snow accretion under the car body during the heavy snow, J. Korean Soc. Railway, 18, 26-43 (2015).
  5. H. Jeong, D.-S. Kim, J.-S. So, J.-W. Kim, S.-J. Lee, D.-H. Kang, and Y.-H. Kim, Operator requirement analysis of the double deck high speed train, Spring Conference of the Korean Society for Railway, May 22-24, Changwon, Korea, 1034-1039 (2014).
  6. H.-B. Gwon, S.-W. Nam, D.-S. Kim, I.-W. Lee, and J.-S. Han, Research on countermeasures for ballast-flying phenomenon by accreted snow/ice from high-speed trains, Spring Conference of the Korean Society for Railway, June 3-5, Gyeongju, Korea, 77-82 (2004).
  7. Y. Ji, K. Dan, and C. Lee, A mat for preventing flying ballast in the rail road, KR Patent 2003646470000 (2004).
  8. M. Bettez, Winter Technologies for High Speed Rail, Master's Thesis, Norwegian University of Science and Technology, Norway (2011).
  9. L. Kloow and M. Jenstav, High-speed train operation in winter climate, Stockholm Transrail Report, BVF5 Winter R1 (2006).
  10. H.-K. Lee, Watering system and heating scattering apparatus for multipurpose vehicles, Korean Patent 1020090046040 (2009).
  11. G.-W. Park, J.-K. Lee, and H.-G. Lee, Ice melting capacity evaluation of applicable materials of de-icing fluid for high speed railway rolling stock, Appl. Chem. Eng., 30, 384-388 (2019). https://doi.org/10.14478/ACE.2019.1026
  12. H.-S. Sang, Snow removing effect of potassium acetate deicing chemicals, Annual Conference of the Korean Society of Industrial Application, May 31-37, Changwon, Korea, 31-37 (2006).
  13. B. Lee, B. Yun, J. Lee, and Y. Chung, Deicing performance with deicer types, Int. J. Highway Eng., 7, 391-396 (2005).
  14. L. Paulukuhn and X. Wu, The low temperatures technology concepts and operational experience in russian high speed train velaro rus, Foreign Rolling Stock, 49, 16-19 (2012).
  15. Z.-J. Wang, D.-J. Kwon, K. Lawence DeVries, and J.-M. Park, Frost formation and anti-icing performance of a hydrophobic coating on aluminum, Exp. Therm. Fluid Sci., 60, 132-137 (2015). https://doi.org/10.1016/j.expthermflusci.2014.09.003
  16. C. Wei, B. Jin, Q. Zhang, X. Zhan, and F. Chen, Anti-icing performance of super-wetting surfaces from icing-resistance to ice-phobic aspects: Robust hydrophobic or slippery surfaces, J. Alloys Compd., 765, 721-730 (2018). https://doi.org/10.1016/j.jallcom.2018.06.041
  17. J. Gao, Y.-J. Geng, S.-C. Li, X. Chen, D.-D. Shi, P.-J. Zhou, Z.-H. Zhou, and Z.-H. Wu, Effect of silane semulsion on waterproofing and anti-icing performance of foamed concrete, Constr. Build. Mater., 301, 124082 (2021).