DOI QR코드

DOI QR Code

Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome

  • Seo Won, Shin (Department of Korean Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Ik Hyun, Cho (Department of Korean Medicine, College of Korean Medicine, Kyung Hee University)
  • Received : 2022.06.22
  • Accepted : 2022.09.27
  • Published : 2023.01.02

Abstract

Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, and ICT (NRF-2022R1A2C2009817). This research was also performed by Independent Learning and Research Program and Undergraduate Research Assistant Program in Kyung Hee University (2021).

References

  1. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020;87:281-6.  https://doi.org/10.1007/s12098-020-03263-6
  2. Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, Megawati D, Hayati Z, Wagner AL, Mudatsir M. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health 2020;13:667-73.  https://doi.org/10.1016/j.jiph.2020.03.019
  3. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med 2020;35:1545-9.  https://doi.org/10.1007/s11606-020-05762-w
  4. Mahdizade Ari M, Mohamadi MH, Shadab Mehr N, Abbasimoghaddam S, Shekartabar A, Heidary M, Khoshnood S. Neurological manifestations in patients with COVID-19: a systematic review and meta-analysis. J Clin Lab Anal 2022;36:e24403.  https://doi.org/10.1002/jcla.24403
  5. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015;21:677-87.  https://doi.org/10.1038/nm.3893
  6. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 2019;20. 
  7. Menu P, Vince JE. The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 2011;166:1-15.  https://doi.org/10.1111/j.1365-2249.2011.04440.x
  8. Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 2017;11:63.  https://doi.org/10.3389/fncel.2017.00063
  9. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Fengli Li F, Tao Xin T, Qi Pang Q, Yi F. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 2014;34:660-7.  https://doi.org/10.1038/jcbfm.2013.242
  10. Johann S, Heitzer M, Kanagaratnam M, Goswami A, Rizo T, Weis J, Dirk Troost D, Beyer C. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia 2015;63:2260-73.  https://doi.org/10.1002/glia.22891
  11. Zhao N, Di B, Xu LL. The NLRP3 inflammasome and COVID-19: activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev 2021;61:2-15.  https://doi.org/10.1016/j.cytogfr.2021.06.002
  12. Pamuru RR, Ponneri N, Damu AG, Vadde R. Targeting natural products for the treatment of COVID-19 - an updated review. Curr Pharm Des 2020;26:5278-85.  https://doi.org/10.2174/1381612826666200903122536
  13. Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N. Traditional herbal medicine candidates as complementary treatments for COVID-19: a Review of Their Mechanisms. In: Pros and cons. Evidence-based complementary and alternative medicine; 2020. p. 2020. 
  14. Huang J, Tao G, Liu J, Cai J, Huang Z, Chen JX. Current prevention of COVID-19: natural products and herbal medicine. Front Pharmacol 2020;11:588508.  https://doi.org/10.3389/fphar.2020.588508
  15. Chen H, Du Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. 2020. 
  16. Ang L, Song E, Lee HW, Lee MS. Herbal medicine for the treatment of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis of randomized controlled trials. Journal of Clinical Medicine 2020;9:1583.  https://doi.org/10.3390/jcm9051583
  17. Kumar A, Rai A, Khan MS, Kumar A, Haque ZU, Fazil M, Rabbani G. Role of herbal medicines in the management of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. J Tradit Complement Med 2022;12:100-13.  https://doi.org/10.1016/j.jtcme.2022.01.002
  18. Choi JH, Lee YH, Kwon TW, Ko SG, Nah SY, Cho IH. Can Panax ginseng help control cytokine storm in COVID-19? J Ginseng Res 2022;46:337-47.  https://doi.org/10.1016/j.jgr.2022.02.006
  19. Yi YS. Potential benefits of ginseng against COVID-19 by targeting inflammasomes. J Ginseng Res 2022. https://doi.org/10.1016/j.jgr.2022.03.00. In press. 
  20. Jung EM, Lee GS. Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic. J Ginseng Res 2022;46:331-6.  https://doi.org/10.1016/j.jgr.2022.02.003
  21. Ahn H, Han BC, Lee SH, Lee GS. Fructose-arginine, a non-saponin molecule of Korean Red Ginseng, attenuates AIM2 inflammasome activation. J Ginseng Res 2020;44:808-14.  https://doi.org/10.1016/j.jgr.2020.06.002
  22. Yun M, Yi YS. Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation. J Ginseng Res 2020;44:373-85.  https://doi.org/10.1016/j.jgr.2019.12.006
  23. Yi YS. Roles of ginsenosides in inflammasome activation. J Ginseng Res 2019;43:172-8.  https://doi.org/10.1016/j.jgr.2017.11.005
  24. Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a global health crisis. Physiol Genomics 2020;52:549-57.  https://doi.org/10.1152/physiolgenomics.00089.2020
  25. Khandia R, Singhal S, Alqahtani T, Kamal MA, El-Shall NA, Nainu F, Desingu PA, Dhama K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ Res 2022;209:112816.  https://doi.org/10.1016/j.envres.2022.112816
  26. Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G. Omicron and Delta variant of SARS-CoV-2: a comparative computational study of spike protein. J Med Virol 2022;94:1641-9.  https://doi.org/10.1002/jmv.27526
  27. Lechien JR, Chiesa-Estomba CM, Place S, Van Laethem Y, Cabaraux P, Mat Q, Huet K, Plzak J, Horoi M, Hans S, et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med 2020;288:335-44.  https://doi.org/10.1111/joim.13089
  28. Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: a narrative review on potential mechanisms. J Mol Histol 2020;51:613-28.  https://doi.org/10.1007/s10735-020-09915-3
  29. Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, Laue M, Schneider J, Brunink S, Greuel S, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 2021;24:168-75.  https://doi.org/10.1038/s41593-020-00758-5
  30. Butowt R, Meunier N, Bryche B, von Bartheld CS. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol 2021;141:809-22.  https://doi.org/10.1007/s00401-021-02314-2
  31. van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 2015;235:277-87.  https://doi.org/10.1002/path.4461
  32. Zheng J, Wong LR, Li K, Verma AK, Ortiz ME, Wohlford-Lenane C, Leidinger MR, Knudson CM, Meyerholz DK, McCray Jr PB, et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 2021;589:603-7.  https://doi.org/10.1038/s41586-020-2943-z
  33. Kempuraj D, Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Khan A, Zaheer SA, Lyer SS, Burton C, James D, et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist 2020;26:402-14.  https://doi.org/10.1177/1073858420941476
  34. Takashita E, Kinoshita N, Yamayoshi S, Sakai-Tagawa Y, Fujisaki S, Ito M, Iwatsuki-Horimoto K, Halfmann P, Watanabe S, Maeda K, et al. Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2. N Engl J Med 2022;386:1475-7.  https://doi.org/10.1056/NEJMc2201933
  35. Yang CJ, Wei YJ, Chang HL, Chang PY, Tsai CC, Chen YH, Hsueh PR. Remdesivir use in the coronavirus disease 2019 pandemic: a mini-review. J Microbiol Immunol Infect 2021;54:27-36.  https://doi.org/10.1016/j.jmii.2020.09.002
  36. Tian L, Pang Z, Li M, Lou F, An X, Zhu S, Song L, Tong Y, Fan H, Fan J. Molnupiravir and its antiviral activity against COVID-19. Front Immunol 2022;13:855496.  https://doi.org/10.3389/fimmu.2022.855496
  37. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 2019;10:128.  https://doi.org/10.1038/s41419-019-1413-8
  38. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016;41:1012-21.  https://doi.org/10.1016/j.tibs.2016.09.002
  39. McKee CM, Coll RC. NLRP3 inflammasome priming: a riddle wrapped in a mystery inside an enigma. J Leukoc Biol 2020;108:937-52.  https://doi.org/10.1002/jlb.3mr0720-513r
  40. Cama VF, Marin-Prida J, Acosta-Rivero N, Acosta EF, Diaz LO, Casadesus AV, Fernandez-Marrero B, Gilva-Rodriguez N, Cremata-Garcia D, CervantesLlanos M, et al. The microglial NLRP3 inflammasome is involved in human SARS-CoV-2 cerebral pathogenicity: a report of three post-mortem cases. J Neuroimmunol 2021;361:577728.  https://doi.org/10.1016/j.jneuroim.2021.577728
  41. Sepehrinezhad A, Gorji A, Sahab Negah S. SARS-CoV-2 may trigger inflammasome and pyroptosis in the central nervous system: a mechanistic view of neurotropism. Inflammopharmacology 2021;29:1049-59.  https://doi.org/10.1007/s10787-021-00845-4
  42. Yang QQ, Zhou JW. Neuroinflammation in the central nervous system: symphony of glial cells. Glia 2019;67:1017-35.  https://doi.org/10.1002/glia.23571
  43. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, et al. Microglia emerge from € erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 2013;16:273-80.  https://doi.org/10.1038/nn.3318
  44. Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 2016;53:1181-94.  https://doi.org/10.1007/s12035-014-9070-5
  45. Guo S, Wang H, Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front Aging Neurosci 2022;14:815347.  https://doi.org/10.3389/fnagi.2022.815347
  46. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res 2014;79:1-12.  https://doi.org/10.1016/j.neures.2013.10.004
  47. Hung WL, Ho CT, Pan MH. Targeting the NLRP3 inflammasome in neuroinflammation: health promoting effects of dietary phytochemicals in neurological disorders. Mol Nutr Food Res 2020;64:e1900550.  https://doi.org/10.1002/mnfr.202070009
  48. Lin S, Mei X. Role of NLRP3 inflammasomes in neuroinflammation diseases. Eur Neurol 2020;83:576-80.  https://doi.org/10.1159/000509798
  49. Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther 2020;12:69.  https://doi.org/10.1186/s13195-020-00640-3
  50. Bocking AD, Gagnon R. Behavioural assessment of fetal health. J Dev Physiol 1991;15:113-20. 
  51. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009;458:509-13.  https://doi.org/10.1038/nature07710
  52. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033-4.  https://doi.org/10.1016/s0140-6736(20)30628-0
  53. He L, Ding Y, Zhang Q, Che X, He Y, Shen H, Wang H, Li Z, Zhao L, Geng J, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006;210:288-97.  https://doi.org/10.1002/path.2067
  54. Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol 2020;11:1518.  https://doi.org/10.3389/fimmu.2020.01518
  55. Chakravarti R, Singh R, Ghosh A, Dey D, Sharma P, Velayutham R, Roy S, Ghosh D. A review on potential of natural products in the management of COVID-19. RSC Adv 2021;11:16711-35.  https://doi.org/10.1039/D1RA00644D
  56. Boozari M, Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res 2021;35:864-76.  https://doi.org/10.1002/ptr.6873
  57. Lee YY, Quah Y, Shin JH, Kwon HW, Lee DH, Han JE, Park JK, Kim SD, Kwak D, Park SC, et al. COVID-19 and Panax ginseng: targeting platelet aggregation, thrombosis and the coagulation pathway. J Ginseng Res 2022;46:175-82.  https://doi.org/10.1016/j.jgr.2022.01.002
  58. Hyun SH, Bhilare KD, In G, Park CK, Kim JH. Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles. J Ginseng Res 2022;46:33-8.  https://doi.org/10.1016/j.jgr.2021.07.007
  59. Lee JI, Park KS, Cho IH. Panax ginseng: a candidate herbal medicine for autoimmune disease. J Ginseng Res 2019;43:342-8.  https://doi.org/10.1016/j.jgr.2018.10.002
  60. Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53.  https://doi.org/10.5142/jgr.2012.36.4.342
  61. Lee WS, Rhee DK. Corona-Cov-2 (COVID-19) and ginseng: comparison of possible use in COVID-19 and influenza. J Ginseng Res 2021;45:535-7.  https://doi.org/10.1016/j.jgr.2020.12.005
  62. Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation 2021;18:258.  https://doi.org/10.1186/s12974-021-02309-6
  63. Yao Y, Hu S, Zhang C, Zhou Q, Wang H, Yang Y, Liu C, Ding H. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an antipyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis. Int Immunopharmacol 2022;105:108582.  https://doi.org/10.1016/j.intimp.2022.108582
  64. Hu J, Zeng C, Wei J, Duan F, Liu S, Zhao Y, Tan H. The combination of Panax ginseng and Angelica sinensis alleviates ischemia brain injury by suppressing NLRP3 inflammasome activation and microglial pyroptosis. Phytomedicine 2020;76:153251.  https://doi.org/10.1016/j.phymed.2020.153251
  65. Hyun SH, Kim SW, Seo HW, Youn SH, Kyung JS, Lee YY, In G, Park CK, Han CK. Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng. J Ginseng Res 2020;44:527-37.  https://doi.org/10.1016/j.jgr.2020.01.005
  66. Hyun SH, Ahn HY, Kim HJ, Kim SW, So SH, In G, Park CK, Han CK. Immunoenhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res 2021;45:191-8.  https://doi.org/10.1016/j.jgr.2020.08.003
  67. Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, Hong EJ, An BS, Jeung EB, Lee GS. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 2014;158:143-50.  https://doi.org/10.1016/j.imlet.2013.12.017
  68. Bharti V, Tan H, Zhou H, Wang JF. Txnip mediates glucocorticoid-activated NLRP3 inflammatory signaling in mouse microglia. Neurochem Int 2019;131:104564.  https://doi.org/10.1016/j.neuint.2019.104564
  69. Zhou Z, He M, Zhao Q, Wang D, Zhang C, Liu C, hao H, Dun Y, He Y, Yuan C, et al. Panax notoginseng saponins attenuate neuroinflammation through TXNIP-mediated NLRP3 inflammasome activation in aging rats. Curr Pharm Biotechnol 2021;22:1369-79.  https://doi.org/10.2174/1389201021999201110204735
  70. Nguyen JC, Killcross AS, Jenkins TA. Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci 2014;8:375.  https://doi.org/10.3389/fnins.2014.00375
  71. Wang J, Wang D, Zhou Z, Zhang X, Zhang C, He Y, Liu C, Yuan C, Yuan D, Wang T. Saponins from Panax japonicus alleviate HFD-induced impaired behaviors through inhibiting NLRP3 inflammasome to upregulate AMPA receptors. Neurochem Int 2021;148:105098.  https://doi.org/10.1016/j.neuint.2021.105098
  72. Chei S, Oh HJ, Jang H, Lee K, Jin H, Choi Y, Lee BY. Korean red ginseng suppresses the expression of oxidative stress response and NLRP3 inflammasome genes in aged C57bl/6 mouse ovaries. Foods 2020;9. 
  73. Liu C, Wang J, Yang Y, Liu X, Zhu Y, Zou J, Peng S, Le TH, Chen Y, Zhao S, et al. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochem Pharmacol 2018;155:366-79.  https://doi.org/10.1016/j.bcp.2018.07.010
  74. Gao XY, Liu GC, Zhang JX, Wang LH, Xu C, Yan ZA, Wang A, Su YF, Lee JJ, Piao GC, et al. Pharmacological properties of ginsenoside Re. Front Pharmacol 2022;13:754191.  https://doi.org/10.3389/fphar.2022.754191
  75. Wang H, Lv J, Jiang N, Huang H, Wang Q, Liu X. Ginsenoside Re protects against chronic restraint stress-induced cognitive deficits through regulation of NLRP3 and Nrf2 pathways in mice. Phytother Res 2021;35:2523-35. https://doi.org/10.1002/ptr.6947. 
  76. Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013;37:8-29.  https://doi.org/10.5142/jgr.2013.37.8
  77. Zhang YQ, Wang XB, Xue RR, Gao XX, Li W. Ginsenoside Rg1 attenuates chronic unpredictable mild stress-induced depressive-like effect via regulating NF-kappaB/NLRP3 pathway in rats. Neuroreport 2019;30:893-900.  https://doi.org/10.1097/WNR.0000000000001302
  78. Yao Y, Li C, Qian F, Zhao Y, Shi X, Hong D, Ai Q, Zhong L. Ginsenoside Rg1 inhibits microglia pyroptosis induced by lipopolysaccharide through regulating STAT3 signaling. J Inflamm Res 2021;14:6619-32.  https://doi.org/10.2147/JIR.S326888
  79. Shi Y, Wang H, Zheng M, Xu W, Yang Y, Shi F. Ginsenoside Rg3 suppresses the NLRP3 inflammasome activation through inhibition of its assembly. FASEB J 2020;34:208-21.  https://doi.org/10.1096/fj.201901537r
  80. Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res 2018;42:255-63.  https://doi.org/10.1016/j.jgr.2017.04.011
  81. Li CW, Deng MZ, Gao ZJ, Dang YY, Zheng GD, Yang XJ, Chao YX, Cai YF, Wu XL. Effects of compound K, a metabolite of ginsenosides, on memory and cognitive dysfunction in db/db mice involve the inhibition of ER stress and the NLRP3 inflammasome pathway. Food Funct 2020;11:4416-27.  https://doi.org/10.1039/C9FO02602A
  82. Zhai Y, Meng X, Luo Y, Wu Y, Ye T, Zhou P, Ding S, Wang M, Lu S, Zhu L, et al. Notoginsenoside R1 ameliorates diabetic encephalopathy by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Oncotarget 2018;9:9344-63.  https://doi.org/10.18632/oncotarget.24295
  83. Liu J, Xu Y, Yang J, Wang W, Zhang J, Zhang R, Meng Q. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J Ginseng Res 2017;41:373-8.  https://doi.org/10.1016/j.jgr.2017.01.001
  84. Zhang Z, Yang H, Yang J, Xie J, Xu J, Liu C, Wu C. Pseudoginsenoside-F11 attenuates cognitive impairment by ameliorating oxidative stress and neuroinflammation in dgalactose-treated mice. Int Immunopharmacol 2019;67:78-86.  https://doi.org/10.1016/j.intimp.2018.11.026
  85. Han BC, Ahn H, Lee J, Jeon E, Seo S, Jang KH, Lee SH, Kim CH, Lee GS. Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 2017;41:513-23.  https://doi.org/10.1016/j.jgr.2016.10.001
  86. Ahn H, Han BC, Kim J, Kang SG, Kim PH, Jang KH, So SH, Lee SH, Lee GS. Nonsaponin fraction of Korean Red Ginseng attenuates cytokine production via inhibition of TLR4 expression. J Ginseng Res 2019;43:291-9.  https://doi.org/10.1016/j.jgr.2018.03.003
  87. Nah SY. Gintonin: a novel ginseng-derived ligand that targets G protein-coupled lysophosphatidic acid receptors. Curr Drug Targets 2012;13:1659-64.  https://doi.org/10.2174/138945012803529947
  88. Choi SH, Lee RM, Cho HS, Hwang SH, Hwang HI, Rhim H, Kim HC, Kim DG, Cho IH, Nah SY. Visualization of the binding between gintonin, a Panax ginseng-derived LPA receptor ligand, and the LPA receptor subtypes and transactivation of the EGF receptor. J Ginseng Res 2022;46:348-56.  https://doi.org/10.1016/j.jgr.2021.10.004
  89. Lee R, Lee BH, Choi SH, Cho YJ, Cho HS, Kim HC, Rhim H, Cho IH, Rhee MH, Nah SY. Effects of Gintonin-enriched fraction on the gene expression of six lysophosphatidic receptor subtypes. J Ginseng Res 2021;45:583-90.  https://doi.org/10.1016/j.jgr.2021.02.006
  90. Yung YC, Stoddard NC, Mirendil H, Chun J. Lysophosphatidic Acid signaling in the nervous system. Neuron 2015;85:669-82.  https://doi.org/10.1016/j.neuron.2015.01.009
  91. Zhang C, Li W, Lei X, Xie Z, Qi L, Wang H, Xiao X, Xiao J, Zheng Y, Dong C, et al. Targeting lysophospholipid acid receptor 1 and ROCK kinases promotes antiviral innate immunity. Sci Adv 2021;7:eabb5933.  https://doi.org/10.1126/sciadv.abb5933
  92. Chei S, Song JH, Oh HJ, Lee K, Jin H, Choi SH, Nah SY, Lee BY. Gintonin-enriched fraction suppresses heat stress-induced inflammation through LPA receptor. Molecules 2020;25. 
  93. Liu B, Zhang Q, Ke C, Xia Z, Luo C, Li Y, Guan X, Cao X, Xu Y, Zhao Y. Ginseng-angelica-sansheng-pulvis boosts neurogenesis against focal cerebral ischemia-induced neurological deficiency. Front Neurosci 2019;13:515.  https://doi.org/10.3389/fnins.2019.00515
  94. Li Y, Liang W, Guo C, Chen X, Huang Y, Wang H, Song L, Zhang D, Zhan W, Lin Z, et al. Renshen Shouwu extract enhances neurogenesis and angiogenesis via inhibition of TLR4/NF-kappaB/NLRP3 signaling pathway following ischemic stroke in rats. J Ethnopharmacol 2020;253:112616.  https://doi.org/10.1016/j.jep.2020.112616
  95. Paik DJ, Lee CH. Review of cases of patient risk associated with ginseng abuse and misuse. J Ginseng Res 2015;39:89-93. https://doi.org/10.1016/j.jgr.2014.11.005