DOI QR코드

DOI QR Code

Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng

  • Jeonghui, Moon (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Younghun, Jung (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Seokoh, Moon (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Jaehyeon, Hwang (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Soomin, Kim (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Mi Soo, Kim (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Jeong Hyeon, Yoon (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Kyeongwon, Kim (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Youngseo, Park (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Jae Youl, Cho (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Dae-Hyuk, Kweon (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
  • Received : 2022.05.02
  • Accepted : 2022.07.11
  • Published : 2023.01.02

Abstract

Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2017R1A6A1A03015642 and NRF-2020R1A2C2101964). This study was also supported by a Korean Ginseng Corporation (KGC) research grant.

References

  1. Nie J, Huang W, Liu Q, Wang Y. HIV-1 pseudoviruses constructed in China regulatory laboratory. Emerg Microbes Infect 2020;9:32-41. https://doi.org/10.1080/22221751.2019.1702479. 
  2. Cheresiz SV, Grigoryev IV, Semenova EA, Pustylnyak VO, Vlasov VV, Pokrovsky AG. A pseudovirus system for the testing of antiviral activity of compounds in different cell lines. Dokl Biochem Biophys 2010;435:295-8. https://doi.org/10.1134/S1607672910060049. 
  3. Wang W, Butler EN, Veguilla V, Vassell R, Thomas JT, Moos Jr M, et al. Establishment of retroviral pseudotypes with influenza hemagglutinins from H1, H3, and H5 subtypes for sensitive and specific detection of neutralizing antibodies. J Virol Methods 2008;153:111-9. https://doi.org/10.1016/j.jviromet.2008.07.015. 
  4. Zhao G, Du L, Ma C, Li Y, Li L, Poon VK, et al. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol J 2013;10:266. https://doi.org/10.1186/1743-422X-10-266. 
  5. Temperton NJ, Chan PK, Simmons G, Zambon MC, Tedder RS, Takeuchi Y, et al. Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes. Emerg Infect Dis 2005;11:411-6. https://doi.org/10.3201/eid1103.040906. 
  6. Chen Q, Nie J, Huang W, Jiao Y, Li L, Zhang T, et al. Development and optimization of a sensitive pseudovirus-based assay for HIV-1 neutralizing antibodies detection using A3R5 cells. Hum Vaccin Immunother 2018;14:199-208. https://doi.org/10.1080/21645515.2017.1373922. 
  7. Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, et al. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 2020;9:680-6. https://doi.org/10.1080/22221751.2020.1743767. 
  8. Du L, Zhao G, Zhang X, Liu Z, Yu H, Zheng BJ, et al. Development of a safe and convenient neutralization assay for rapid screening of influenza HA-specific neutralizing monoclonal antibodies. Biochem Biophys Res Commun 2010;397:580-5. https://doi.org/10.1016/j.bbrc.2010.05.161. 
  9. Wu X, Mao Q, Yao X, Chen P, Chen X, Shao J, et al. Development and evaluation of a pseudovirus-luciferase assay for rapid and quantitative detection of neutralizing antibodies against enterovirus 71. PLoS One 2013;8:e64116. https://doi.org/10.1371/journal.pone.0064116. 
  10. Nie J, Liu L, Wang Q, Chen R, Ning T, Liu Q, et al. Nipah pseudovirus system enables evaluation of vaccines in vitro and in vivo using non-BSL-4 facilities. Emerg Microbes Infect 2019;8:272-81. https://doi.org/10.1080/22221751.2019.1571871. 
  11. Fan C, Wu X, Liu Q, Li Q, Liu S, Lu J, et al. A human DPP4-knockin mouse's susceptibility to infection by authentic and pseudotyped MERS-CoV. Viruses 2018;10. https://doi.org/10.3390/v10090448. 
  12. Stein DR, Warner BM, Soule G, Tierney K, Frost KL, Booth S, et al. A recombinant vesicular stomatitis-based Lassa fever vaccine elicits rapid and long-term protection from lethal Lassa virus infection in Guinea pigs. NPJ Vaccines 2019;4:8. https://doi.org/10.1038/s41541-019-0104-x. 
  13. Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 2015;386:857-66. https://doi.org/10.1016/S0140-6736(15)61117-5. 
  14. Tani H, Morikawa S, Matsuura Y. Development and applications of VSV vectors based on cell tropism. Front Microbiol 2011;2:272. https://doi.org/10.3389/fmicb.2011.00272. 
  15. McKay T, Patel M, Pickles RJ, Johnson LG, Olsen JC. Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Ther 2006;13:715-24. https://doi.org/10.1038/sj.gt.3302715. 
  16. Goyvaerts C, De Vlaeminck Y, Escors D, Lienenklaus S, Keyaerts M, Raes G, et al. Antigen-presenting cell-targeted lentiviral vectors do not support the development of productive T-cell effector responses: implications for in vivo targeted vaccine delivery. Gene Ther 2017;24:370-5. https://doi.org/10.1038/gt.2017.30. 
  17. Zhang L, Li Q, Liu Q, Huang W, Nie J, Wang Y. A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. Hum Vaccin Immunother 2017;13:1811-7. https://doi.org/10.1080/21645515.2017.1325050. 
  18. Hu D, Zhang J, Wang H, Liu S, Yu L, Sun L, et al. Chikungunya virus glycoproteins pseudotype with lentiviral vectors and reveal a broad spectrum of cellular tropism. PLoS One 2014;9:e110893. https://doi.org/10.1371/journal.pone.0110893. 
  19. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020;11:1620. https://doi.org/10.1038/s41467-020-15562-9. 
  20. Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat Protoc 2020;15:3699-715. https://doi.org/10.1038/s41596-020-0394-5. 
  21. Condor Capcha JM, Lambert G, Dykxhoorn DM, Salerno AG, Hare JM, Whitt MA, et al. Generation of SARS-CoV-2 spike pseudotyped virus for viral entry and neutralization assays: a 1-week protocol. Front Cardiovasc Med 2020;7:618651. https://doi.org/10.3389/fcvm.2020.618651. 
  22. Barlan A, Zhao J, Sarkar MK, Li K, McCray Jr PB, Perlman S, et al. Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. J Virol 2014;88:4953-61. https://doi.org/10.1128/JVI.00161-14. 
  23. Fukushi S, Mizutani T, Saijo M, Matsuyama S, Miyajima N, Taguchi F, et al. Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein. J Gen Virol 2005;86(Pt 8):2269-74. https://doi.org/10.1099/vir.0.80955-0. 
  24. Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 2004;101:4240-5. https://doi.org/10.1073/pnas.0306446101. 
  25. Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, et al. A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 1997;94:14764-9. https://doi.org/10.1073/pnas.94.26.14764. 
  26. Mather ST, Wright E, Scott SD, Temperton NJ. Lyophilisation of influenza, rabies and Marburg lentiviral pseudotype viruses for the development and distribution of a neutralisation -assay-based diagnostic kit. J Virol Methods 2014;210:51-8. https://doi.org/10.1016/j.jviromet.2014.09.021. 
  27. Li Q, Liu Q, Huang W, Wu J, Nie J, Wang M, et al. An LASV GPC pseudotyped virus based reporter system enables evaluation of vaccines in mice under non-BSL-4 conditions. Vaccine 2017;35:5172-8. https://doi.org/10.1016/j.vaccine.2017.07.101. 
  28. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dube M, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 2019;12. https://doi.org/10.3390/v12010014. 
  29. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Bio 2021. https://doi.org/10.1038/s41580-021-00418-x. 
  30. Yang J, Petitjean SJL, Koehler M, Zhang Q, Dumitru AC, Chen W, et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun 2020;11:4541. https://doi.org/10.1038/s41467-020-18319-6. 
  31. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-80. https://doi.org/10.1016/j.cell.2020.02.052. e8. 
  32. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020;39:e105114. https://doi.org/10.15252/embj.20105114. 
  33. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009;106:5871-6. https://doi.org/10.1073/pnas.0809524106. 
  34. Johnson BA, Hage A, Kalveram B, Mears M, Plante JA, Rodriguez SE, et al. Peptidoglycan-Associated cyclic lipopeptide disrupts viral infectivity. J Virol 2019;93. https://doi.org/10.1128/JVI.01282-19. 
  35. Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology 2006;350:358-69. https://doi.org/10.1016/j.virol.2006.02.003. 
  36. Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015;202:120-34. https://doi.org/10.1016/j.virusres.2014.11.021. 
  37. Hu J, Gao Q, He C, Huang A, Tang N, Wang K. Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2. Genes Dis 2020;7:551-7. https://doi.org/10.1016/j.gendis.2020.07.006. 
  38. Huang SW, Tai CH, Hsu YM, Cheng D, Hung SJ, Chai KM, et al. Assessing the application of a pseudovirus system for emerging SARS-CoV-2 and reemerging avian influenza virus H5 subtypes in vaccine development. Biomed J 2020;43:375-87. https://doi.org/10.1016/j.bj.2020.06.003. 
  39. Tani H, Kimura M, Tan L, Yoshida Y, Ozawa T, Kishi H, et al. Evaluation of SARS-CoV-2 neutralizing antibodies using a vesicular stomatitis virus possessing SARS-CoV-2 spike protein. Virol J 2021;18:16. https://doi.org/10.1186/s12985-021-01490-7. 
  40. Xiong HL, Wu YT, Cao JL, Yang R, Liu YX, Ma J, et al. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg Microbes Infect 2020;9:2105-13. https://doi.org/10.1080/22221751.2020.1815589. 
  41. Yang R, Huang B, A R, Li W, Wang W, Deng Y, et al. Development and effectiveness of pseudotyped SARS-CoV-2 system as determined by neutralizing efficiency and entry inhibition test in vitro. Biosaf Health 2020;2:226-31. https://doi.org/10.1016/j.bsheal.2020.08.004. 
  42. Yang P, Yang Y, Wu Y, Huang C, Ding Y, Wang X, et al. An optimized and robust SARS-CoV-2 pseudovirus system for viral entry research. J Virol Methods 2021;295:114221. https://doi.org/10.1016/j.jviromet.2021.114221. 
  43. Li QQ, Liu Q, Huang WJ, Li XG, Wang YC. Current status on the development of pseudoviruses for enveloped viruses. Rev Med Virol 2018;28. https://doi.org/10.1002/rmv.1963. 
  44. Chen M, Zhang XE. Construction and applications of SARS-CoV-2 pseudoviruses: a mini review. Int J Biol Sci 2021;17:1574-80. https://doi.org/10.7150/ijbs.59184. 
  45. Hu J, Gao Q, He C, Huang A, Tang N, Wang K. Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2. Genes & Diseases 2020;7:551-7. https://doi.org/10.1016/j.gendis.2020.07.006. 
  46. Lassen KG, Hebbeler AM, Bhattacharyya D, Lobritz MA, Greene WC. A flexible model of HIV-1 latency permitting evaluation of many primary CD4 T-cell reservoirs. PLoS One 2012;7:e30176. https://doi.org/10.1371/journal.pone.0030176. 
  47. Bojadzic D, Alcazar O, Chen J, Chuang ST, Condor Capcha JM, Shehadeh LA, et al. Small-molecule inhibitors of the coronavirus spike: ACE2 protein-protein interaction as blockers of viral attachment and entry for SARS-CoV-2. ACS Infect Dis 2021;7:1519-34. https://doi.org/10.1021/acsinfecdis.1c00070. 
  48. Wu W, Lin D, Shen X, Li F, Fang Y, Li K, et al. New influenza A Virus entry inhibitors derived from the viral fusion peptides. PLoS One 2015;10:e0138426. https://doi.org/10.1371/journal.pone.0138426. 
  49. Lin D, Luo Y, Yang G, Li F, Xie X, Chen D, et al. Potent influenza A virus entry inhibitors targeting a conserved region of hemagglutinin. Biochem Pharmacol 2017;144. https://doi.org/10.1016/j.bcp.2017.07.023. 35-5. 
  50. Guibinga GH, Miyanohara A, Esko JD, Friedmann T. Cell surface heparan sulfate is a receptor for attachment of envelope protein-free retrovirus-like particles and VSV-G pseudotyped MLV-derived retrovirus vectors to target cells. Molecular Therapy 2002;5:538-46. https://doi.org/10.1006/mthe.2002.0578. 
  51. Kong B, Moon S, Kim Y, Heo P, Jung Y, Yu SH, et al. Virucidal nano-perforator of viral membrane trapping viral RNAs in the endosome. Nat Commun 2019;10:185. https://doi.org/10.1038/s41467-018-08138-1. 
  52. Berselli GB, Sarangi NK, Gimenez AV, Murphy PV, Keyes TE. Microcavity array supported lipid bilayer models of ganglioside - influenza hemagglutinin1 binding. Chem Commun (Camb) 2020;56:11251-4. https://doi.org/10.1039/d0cc04276e. 
  53. Bukrinskaia AG, Kornilaeva GV, Vorkunova NK, Timofeeva NG, Shaposhnikova GI. Gangliosides-specific receptors for the influenza virus. Vopr Virusol 1982;27:661-6. 
  54. Hempel T, Raich L, Olsson S, Azouz NP, Klingler AM, Hoffmann M, et al. Molecular mechanism of inhibiting the SARS-CoV-2 cell entry facilitator TMPRSS2 with camostat and nafamostat. Chem Sci 2021;12:983-92. https://doi.org/10.1039/d0sc05064d. 
  55. Sasaki M, Uemura K, Sato A, Toba S, Sanaki T, Maenaka K, et al. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. Plos Pathog 2021;17. https://doi.org/10.1371/journal.ppat.1009233. 
  56. Kokic G, Hillen HS, Tegunov D, Dienemann C, Seitz F, Schmitzova J, et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat Commun 2021;12:279. https://doi.org/10.1038/s41467-020-20542-0. 
  57. Pruijssers AJ, George AS, Schafer A, Leist SR, Gralinksi LE, Dinnon 3rd KH, et al. Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Rep 2020;32:107940. https://doi.org/10.1016/j.celrep.2020.107940. 
  58. Ou TL, Mou HH, Zhang LZ, Ojha A, Choe H, Farzan M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. Plos Pathog 2021;17. https://doi.org/10.1371.  https://doi.org/10.1371
  59. Liu J, Cao RY, Xu MY, Wang X, Zhang HY, Hu HR, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020;6. https://doi.org/10.1038/s41421-020-0156-0. 
  60. Kwon PS, Oh H, Kwon SJ, Jin W, Zhang F, Fraser K, et al. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov 2020;6:50. https://doi.org/10.1038/s41421-020-00192-8. 
  61. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: protective effects of Korean Red Ginseng against viral infection. J Ginseng Res 2016;40:309-14. https://doi.org/10.1016/j.jgr.2015.09.002. 
  62. Ratan ZA, Rabbi Mashrur F, Runa NJ, Kwon KW, Hosseinzadeh H, Cho JY. Ginseng, a promising choice for SARS-COV-2: a mini review. J Ginseng Res 2022;46:183-7. https://doi.org/10.1016/j.jgr.2022.01.004. 
  63. Jung EM, Lee GS. Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic. J Ginseng Res 2022. https://doi.org/10.1016/j.jgr.2022.02.003. 
  64. Zhu D, Lam DH, Yi Purwanti, Goh SL, Wu C, Zeng J, et al. Systemic delivery of fusogenic membrane glycoprotein-expressing neural stem cells to selectively kill tumor cells. Mol Ther 2013;21:1621-30. https://doi.org/10.1038/mt.2013.123. 
  65. Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M, et al. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms 2021;9. https://doi.org/10.3390/microorganisms9071542. 
  66. Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe 2021;29:477-88. https://doi.org/10.1016/j.chom.2021.01.014. e4. 
  67. Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe 2021;29:1124-36. https://doi.org/10.1016/j.chom.2021.06.006.e11. 
  68. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 2021;184:3426-37. https://doi.org/10.1016/j.cell.2021.04.025.e8. 
  69. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215-20. https://doi.org/10.1038/s41586-020-2180-5. 
  70. Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, et al. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science 2021;373. https://doi.org/10.1126/science.abi6226. 
  71. Kumar V, Singh J, Hasnain SE, Sundar D. Possible link between higher transmissibility of Alpha, Kappa and Delta variants of SARS-CoV-2 and increased structural stability of its spike protein and hACE2 affinity. Int J Mol Sci 2021;22. https://doi.org/10.3390/ijms22179131.