DOI QR코드

DOI QR Code

Ginsenoside Rg1 ameliorates chronic intermittent hypoxia-induced vascular endothelial dysfunction by suppressing the formation of mitochondrial reactive oxygen species through the calpain-1 pathway

  • Fang, Zhao (Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University) ;
  • Meili, Lu (Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University) ;
  • Hongxin, Wang (Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University)
  • Received : 2022.04.14
  • Accepted : 2022.07.19
  • Published : 2023.01.02

Abstract

Background: As the major pathophysiological feature of obstructive sleep apnea (OSA), chronic intermittent hypoxia (CIH) is vital for the occurrence of cardiovascular complications. The activation of calpain-1 mediates the production of endothelial reactive oxygen species (ROS) and impairs nitric oxide (NO) bioavailability, resulting in vascular endothelial dysfunction (VED). Ginsenoside Rg1 is thought to against endothelial cell dysfunction, but the potential mechanism of CIH-induced VED remains unclear. Methods: C57BL/6 mice and human coronary artery endothelial cells (HCAECs) were exposed to CIH following knockout or overexpression of calpain-1. The effect of ginsenoside Rg1 on VED, oxidative stress, mitochondrial dysfunction, and the expression levels of calpain-1, PP2A and p-eNOS were detected both in vivo and in vitro. Results: CIH promoted VED, oxidative stress and mitochondrial dysfunction accompanied by enhanced levels of calpain-1 and PP2A and reduced levels of p-eNOS in mice and cellular levels. Ginsenoside Rg1, calpain-1 knockout, OKA, NAC and TEMPOL treatment protected against CIH-induced VED, oxidative stress and mitochondrial dysfunction, which is likely concomitant with the downregulated protein expression of calpain-1 and PP2A and the upregulation of p-eNOS in mice and cellular levels. Calpain-1 overexpression increased the expression of PP2A, reduced the level of p-eNOS, and accelerated the occurrence and development of VED, oxidative stress and mitochondrial dysfunction in HCAECs exposed to CIH. Moreover, scavengers of O2·-, H2O2, complex I or mitoKATP abolished CIH-induced impairment in endothelial-dependent relaxation. Conclusion: Ginsenoside Rg1 may alleviate CIH-induced vascular endothelial dysfunction by suppressing the formation of mitochondrial reactive oxygen species through the calpain-1 pathway.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos:81973553) and Guide Planned Project of Liaoning Province (JYTJCZR2020077).

References

  1. Patel SR. Obstructive sleep apnea. ANN INTERN MED 2019;171:C81-96. https://doi.org/10.7326/AITC201912030
  2. Feng J, Zhang D, Chen B. Endothelial mechanisms of endothelial dysfunction in patients with obstructive sleep apnea. SLEEP BREATH 2012;16:283-94. https://doi.org/10.1007/s11325-011-0519-8
  3. Baltzis D, Bakker JP, Patel SR, Veves A. Obstructive sleep apnea and vascular diseases. COMPR PHYSIOL 2016;6:1519-28. https://doi.org/10.1002/cphy.c150029
  4. Cheng Z, Jiang X, Pansuria M, Fang P, Mai J, Mallilankaraman K, Gandhirajan RK, Eguchi S, Scalia R, Madesh M, et al. Hyperhomocysteinemia and hyperglycemia induce and potentiate endothelial dysfunction via mucalpain activation. DIABETES 2015;64:947-59. https://doi.org/10.2337/db14-0784
  5. Etwebi Z, Landesberg G, Preston K, Eguchi S, Scalia R. Mechanistic role of the calcium-dependent protease calpain in the endothelial dysfunction induced by MPO (myeloperoxidase). HYPERTENSION 2018;71:761-70. https://doi.org/10.1161/HYPERTENSIONAHA.117.10305
  6. Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, Fan GC, Lu Y, Abel ED, Greer PA, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. DIABETES 2016;65:255-68. https://doi.org/10.2337/db15-0963
  7. Li W, Yang J, Lyu Q, Wu G, Lin S, Yang Q, Hu J. Taurine attenuates isoproterenol-induced H9c2 cardiomyocytes hypertrophy by improving antioxidative ability and inhibiting calpain-1-mediated apoptosis. MOL CELL BIOCHEM 2020;469:119-32. https://doi.org/10.1007/s11010-020-03733-7
  8. Nie Q, Zhu L, Zhang L, Leng B, Wang H. Astragaloside IV protects against hyperglycemia-induced vascular endothelial dysfunction by inhibiting oxidative stress and Calpain-1 activation. LIFE SCI 2019;232:116662. https://doi.org/10.1016/j.lfs.2019.116662
  9. Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 2018;100:1-19. https://doi.org/10.1016/j.vph.2017.05.005
  10. Costa AD, Quinlan CL, Andrukhiv A, West IC, Jaburek M, Garlid KD. The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol Heart Circ Physiol 2006;290:H406-15. https://doi.org/10.1152/ajpheart.00794.2005
  11. Zhu GX, Zuo JL, Xu L, Li SQ. Ginsenosides in vascular remodeling: cellular and molecular mechanisms of their therapeutic action. PHARMACOL RES 2021;169:105647. https://doi.org/10.1016/j.phrs.2021.105647
  12. Zhang L, Li Y, Ma X, Liu J, Wang X, Zhang L, Li C, Li Y, Yang W. Ginsenoside Rg1-notoginsenoside R1-protocatechuic aldehyde reduces atherosclerosis and attenuates low-shear stress-induced vascular endothelial cell dysfunction. FRONT PHARMACOL 2020;11:588259. https://doi.org/10.3389/fphar.2020.588259
  13. Li CY, Deng W, Liao XQ, Deng J, Zhang YK, Wang DX. The effects and mechanism of ginsenoside Rg1 on myocardial remodeling in an animal model of chronic thromboembolic pulmonary hypertension. EUR J MED RES 2013;18:16. https://doi.org/10.1186/2047-783X-18-16
  14. Li L, Pan CS, Yan L, Cui YC, Liu YY, Mu HN, He K, Hu BH, Chang X, Sun K, et al. Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways. FRONT PHYSIOL 2018;9:78. https://doi.org/10.3389/fphys.2018.00078
  15. Zheng M, Zhao M, Tang L, Zhang C, Song L, Wang W. Ginsenoside Rg1 attenuates hypoxia and hypercapnia-induced vasoconstriction in isolated rat pulmonary arterial rings by reducing the expression of p38. J THORAC DIS 2016;8:1513-23. https://doi.org/10.21037/jtd.2016.05.71
  16. Yan W, Liu J. Effects of Chinese herbal monomers on oxidative phosphorylation and membrane potential in cerebral mitochondria isolated from hypoxia-exposed rats in vitro. NEURAL REGEN RES 2012;7:2099-106.
  17. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J CELL BIOCHEM 2009;108:117-24. https://doi.org/10.1002/jcb.22233
  18. Zu G, Guo J, Che N, Zhou T, Zhang X, Wang G, Ji A, Tian X. Protective effects of ginsenoside Rg1 on intestinal ischemia/reperfusion injury-induced oxidative stress and apoptosis via activation of the Wnt/beta-catenin pathway. Sci Rep 2016;6:38480. https://doi.org/10.1038/srep38480
  19. Zhu T, Wang H, Wang L, Zhong X, Huang W, Deng X, Guo H, Xiong J, Xu Y, Fan J. Ginsenoside Rg1 attenuates high glucose-induced endothelial barrier dysfunction in human umbilical vein endothelial cells by protecting the endothelial glycocalyx. EXP THER MED 2019;17:3727-33. https://doi.org/10.3892/etm.2019.7378
  20. Jiang S, Jiao G, Chen Y, Han M, Wang X, Liu W. AstragalosideIV attenuates chronic intermittent hypoxia-induced myocardial injury by modulating Ca2+ homeostasis. CELL BIOCHEM FUNCT 2020;38:710-20. https://doi.org/10.1002/cbf.3538
  21. Yan YR, Zhang L, Lin YN, Sun XW, Ding YJ, Li N, Li HP, Li SQ, Zhou JP, Li QY. Chronic intermittent hypoxia-induced mitochondrial dysfunction mediates endothelial injury via the TXNIP/NLRP3/IL-1β signaling pathway. FREE RADICAL BIO MED 2021;165:401-10. https://doi.org/10.1016/j.freeradbiomed.2021.01.053
  22. Singhal A. Endothelial dysfunction: role in obesity-related disorders and the early origins of CVD. Proc Nutr Soc 2005;64:15-22. https://doi.org/10.1079/PNS2004404
  23. Hernandez-Guerra M, de Ganzo ZA, Gonzalez-Mendez Y, Salido E, Abreu P, Moreno M, Felipe V, Abrante B, Quintero E. Chronic intermittent hypoxia aggravates intrahepatic endothelial dysfunction in cirrhotic rats. HEPATOLOGY 2013;57:1564-74. https://doi.org/10.1002/hep.26152
  24. Orru G, Storari M, Scano A, Piras V, Taibi R, Viscuso D. Obstructive Sleep Apnea, oxidative stress, inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers. EUR REV MED PHARMACO 2020;24:6939-48.
  25. Gonzaga C, Bertolami A, Bertolami M, Amodeo C, Calhoun D. Obstructive sleep apnea, hypertension and cardiovascular diseases. J HUM HYPERTENS 2015;29:705-12. https://doi.org/10.1038/jhh.2015.15
  26. Badran M, Yassin BA, Lin D, Kobor MS, Ayas N, Laher I. Gestational intermittent hypoxia induces endothelial dysfunction, reduces perivascular adiponectin and causes epigenetic changes in adult male offspring. J Physiol 2019;597:5349-64. https://doi.org/10.1113/JP277936
  27. Tanaka A, Youle RJ. A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis. MOL CELL 2008;29:409-10. https://doi.org/10.1016/j.molcel.2008.02.005
  28. Wang K, Liu CY, Zhang XJ, Feng C, Zhou LY, Zhao Y, Li PF. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. CELL DEATH DIFFER 2015;22:1058-68. https://doi.org/10.1038/cdd.2014.200
  29. Han Q, Li G, Ip MS, Zhang Y, Zhen Z, Mak JC, Zhang N. Haemin attenuates intermittent hypoxia-induced cardiac injury via inhibiting mitochondrial fission. J CELL MOL MED 2018;22:2717-26. https://doi.org/10.1111/jcmm.13560
  30. Wu Q, Zhao Y, Duan W, Liu Y, Chen X, Zhu M. Propofol inhibits high glucose-induced PP2A expression in human umbilical vein endothelial cells. Vascul Pharmacol 2017;91:18-25. https://doi.org/10.1016/j.vph.2017.02.002
  31. Tang X, Luo YX, Chen HZ, Liu DP. Mitochondria, endothelial cell function, and vascular diseases. FRONT PHYSIOL 2014;5:175. https://doi.org/10.3389/fphys.2014.00175
  32. Leng B, Li C, Sun Y, Zhao K, Zhang L, Lu M, Wang H. Protective effect of astragaloside IV on high glucose-induced endothelial dysfunction via inhibition of P2X7R dependent P38 MAPK signaling pathway. OXID MED CELL LONGEV 2020;2020:1-14. https://doi.org/10.1155/2020/5070415
  33. Chai SC, Davis K, Zhang Z, Zha L, Kirschner KF. Effects of tart cherry juice on biomarkers of inflammation and oxidative stress in older adults. NUTRIENTS 2019;11.
  34. Sun H, Zhang H, Li K, Wu H, Zhan X, Fang F, Qin Y, Wei Y. ESM-1 promotes adhesion between monocytes and endothelial cells under intermittent hypoxia. J CELL PHYSIOL 2019;234:1512-21. https://doi.org/10.1002/jcp.27016
  35. Li MM, Zheng YL, Wang WD, Lin S, Lin HL, Neuropeptide Y. An update on the mechanism underlying chronic intermittent hypoxia-induced endothelial dysfunction. FRONT PHYSIOL 2021;12:712281. https://doi.org/10.3389/fphys.2021.712281
  36. Khan MM, Kalim UU, Khan MH, Lahesmaa R. PP2A and its inhibitors in helper T-cell differentiation and autoimmunity. FRONT IMMUNOL 2021;12:786857. https://doi.org/10.3389/fimmu.2021.786857
  37. Su J, Zhang J, Bao R, Xia C, Zhang Y, Zhu Z, Lv Q, Qi Y, Xue J. Mitochondrial dysfunction and apoptosis are attenuated through activation of AMPK/GSK3beta/PP2A pathway in Parkinson's disease. EUR J PHARMACOL 2021;907:174202. https://doi.org/10.1016/j.ejphar.2021.174202
  38. Deng Y, Cai Y, Liu L, Lin X, Lu P, Guo Y, Han M, Xu G. Blocking Tyr265 nitration of protein phosphatase 2A attenuates nitrosative stress-induced endothelial dysfunction in renal microvessels. FASEB J 2019;33:3718-30. https://doi.org/10.1096/fj.201800885rr
  39. Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, Pettey D, Losee J, Duncan B, Gale D, et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. DIABETES 2012;61:1848-59. https://doi.org/10.2337/db11-1399
  40. Zhang M, Wang G, Peng T. Calpain-Mediated mitochondrial damage: an emerging mechanism contributing to cardiac disease. CELLS-BASEL 2021:10.
  41. Cai Z, Zhang Y, Zhang Y, Miao X, Li S, Yang H, Ling Q, Hoffmann PR, Huang Z. Use of a mouse model and human umbilical vein endothelial cells to investigate the effect of arsenic exposure on vascular endothelial function and the associated role of calpains. Environ Health Perspect 2019;127:77003. https://doi.org/10.1289/EHP4538
  42. Su BC, Li CC, Horng JL, Chen JY. Calcium-dependent calpain activation-mediated mitochondrial dysfunction and oxidative stress are required for cytotoxicity of epinecidin-1 in human synovial sarcoma SW982 cells. INT J MOL SCI 2020:21.
  43. Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: still a therapeutic target? NUTRIENTS 2019;11.
  44. Garcia N, Zazueta C, Aguilera-Aguirre L. Oxidative stress and inflammation in cardiovascular disease. OXID MED CELL LONGEV 2017;2017:5853238. https://doi.org/10.1155/2017/5853238
  45. Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W, Wang J. Oxidative stress in cell death and cardiovascular diseases. OXID MED CELL LONGEV 2019;2019:9030563. https://doi.org/10.1155/2019/9030563
  46. Chang R, Mamun A, Dominic A, Le NT. SARS-CoV-2 mediated endothelial dysfunction: the potential role of chronic oxidative stress. FRONT PHYSIOL 2020;11:605908. https://doi.org/10.3389/fphys.2020.605908
  47. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction. CIRC RES 2008;102:488-96. https://doi.org/10.1161/CIRCRESAHA.107.162800
  48. Snow JB, Norton CE, Sands MA, Weise-Cross L, Yan S, Herbert LM, Sheak JR, Gonzalez BL, Walker BR, Kanagy NL, et al. Intermittent hypoxia augments pulmonary vasoconstrictor reactivity through PKCbeta/mitochondrial oxidant signaling. Am J Respir Cell Mol Biol 2020;62:732-46. https://doi.org/10.1165/rcmb.2019-0351oc
  49. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. CIRC RES 2008;102:488-96. https://doi.org/10.1161/CIRCRESAHA.107.162800