DOI QR코드

DOI QR Code

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu (Department of Rehabilitation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Liang, Yu (Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Qian, Yu (Department of Rehabilitation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Nengwei, Yu (Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Fei, Xu (Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Suping, Li (Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital)
  • Received : 2022.05.17
  • Accepted : 2022.08.25
  • Published : 2023.03.02

Abstract

Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

Keywords

Acknowledgement

All persons who have made substantial contributions to the work reported in the manuscript (e.g., technical help, writing and editing assistance, general support), but who do not meet the criteria for authorship, are named in the Acknowledgements and have given us their written permission to be named. If we have not included an Acknowledgements, then that indicates that we have not received substantial contributions from non-authors.

References

  1. Nabavi SF, Sureda A, Habtemariam S, Nabavi SM. Ginsenoside Rd and ischemic stroke; a short review of literature. J Ginseng Res 2015;39(4):299-303. https://doi.org/10.1016/j.jgr.2015.02.002. Epub 2016/02/13 PubMed PMID: 26869821; PubMed Central PMCID: PMCPMC4593783.
  2. Wang B, Zhu Q, Man X, Guo L, Hao L. Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury. Neural Regen Res 2014;9(18):1678-87. https://doi.org/10.4103/1673-5374.141802. Epub 2014/11/07 PubMed PMID: 25374589; PubMed Central PMCID: PMCPMC4211188.
  3. Zhang C, Du F, Shi M, Ye R, Cheng H, Han J, et al. Ginsenoside Rd protects neurons against glutamate-induced excitotoxicity by inhibiting ca(2+) influx. Cell Mol Neurobiol 2012;32(1):121-8. https://doi.org/10.1007/s10571-011-9742-x. Epub 2011/08/04 PubMed PMID: 21811848.
  4. Zhang G, Xia F, Zhang Y, Zhang X, Cao Y, Wang L, et al. Ginsenoside Rd is efficacious against acute ischemic stroke by suppressing microglial proteasome-mediated inflammation. Mol Neurobiol 2016;53(4):2529-40. https://doi.org/10.1007/s12035-015-9261-8. Epub 2015/06/18 PubMed PMID: 26081140.
  5. Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, et al. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 2011;58(3):391-8. https://doi.org/ 10.1016/j.neuint.2010.12.015. Epub 2010/12/28 PubMed PMID: 21185898.
  6. Zhao H, Sapolsky RM, Steinberg GK. Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke. Molecular Neurobiology 2006;34(3):249-69. https://doi.org/10.1385/MN:34:3:249.
  7. Jin S, Jeon JH, Lee S, Kang WY, Seong SJ, Yoon YR, et al. Detection of 13 ginsenosides (Rb1, Rb2, rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K, 20(S)-Protopanaxadiol, and 20(S)-Protopanaxatriol) in human plasma and application of the analytical method to human pharmacokinetic studies following two week-repeated administration of red ginseng extract. Molecules 2019;24(14). https://doi.org/10.3390/molecules24142618. Epub 2019/07/22 PubMed PMID: 31323835; PubMed Central PMCID: PMCPMC6680484.
  8. Choi MK, Jin S, Jeon JH, Kang WY, Seong SJ, Yoon YR, et al. Tolerability and pharmacokinetics of ginsenosides Rb1, Rb2, Rc, Rd, and compound K after single or multiple administration of red ginseng extract in human beings. J Ginseng Res 2020;44(2):229-37. https://doi.org/10.1016/j.jgr.2018.10.006. Epub 2020/03/10 PubMed PMID: 32148404; PubMed Central PMCID: PMCPMC7031742.
  9. Huang Q, Lou T, Wang M, Xue L, Lu J, Zhang H, et al. Compound K inhibits autophagy-mediated apoptosis induced by oxygen and glucose deprivation/ reperfusion via regulating AMPK-mTOR pathway in neurons. Life Sci 2020;254:117793. https://doi.org/10.1016/j.lfs.2020.117793. Epub 2020/05/18 PubMed PMID: 32416164.
  10. Park JS, Shin JA, Jung JS, Hyun JW, Van Le TK, Kim DH, et al. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J Pharmacol Exp Ther 2012;341(1): 59-67. https://doi.org/10.1124/jpet.111.189035. Epub 2011/12/31 PubMed PMID: 22207656.
  11. Oh JM, Jeong JH, Park SY, Chun S. Ginsenoside compound K induces adult hippocampal proliferation and survival of newly generated cells in young and elderly mice. Biomolecules 2020;10(3). https://doi.org/10.3390/ biom10030484. Epub 2020/03/27 PubMed PMID: 32210026; PubMed Central PMCID: PMCPMC7175218.
  12. Myers Jr MG, Sun XJ, White MF. The IRS-1 signaling system. Trends Biochem Sci 1994;19(7):289-93. https://doi.org/10.1016/0968-0004(94)90007-8. Epub 1994/07/01 PubMed PMID: 8048169.
  13. Tu YF, Jiang ST, Chow YH, Huang CC, Ho CJ, Chou YP. Insulin receptor substrate-1 activation mediated p53 downregulation protects against hypoxic-ischemia in the neonatal brain. Mol Neurobiol 2016;53(6):3658-69. https://doi.org/10.1007/s12035-015-9300-5. Epub 2015/06/27 PubMed PMID: 26111627.
  14. Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012;2012:384017. https://doi.org/10.1155/2012/384017. Epub 2012/04/14 PubMed PMID: 22500228; PubMed Central PMCID: PMCPMC3303591.
  15. Duarte AI, Santos P, Oliveira CR, Santos MS, Rego AC. Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3beta signaling pathways and changes in protein expression. Biochim Biophys Acta 2008;1783(6): 994-1002. https://doi.org/10.1016/j.bbamcr.2008.02.016. Epub 2008/03/20 PubMed PMID: 18348871.
  16. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7(2):85-96. https:// doi.org/10.1038/nrm1837. Epub 2006/02/24 PubMed PMID: 16493415.
  17. Langlais P, Yi Z, Finlayson J, Luo M, Mapes R, De Filippis E, et al. Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 2011;54(11): 2878-89. https://doi.org/10.1007/s00125-011-2271-9. Epub 2011/08/19 PubMed PMID: 21850561; PubMed Central PMCID: PMCPMC3882165.
  18. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001;414(6865):799-806. https://doi.org/10.1038/414799a. Epub 2001/12/14 PubMed PMID: 11742412.
  19. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by proteintyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem 2000;275(6):4283-9. https://doi.org/10.1074/jbc.275.6.4283. Epub 2000/02/08 PubMed PMID: 10660596.
  20. Gonzalez-Rodriguez A, Mas Gutierrez JA, Sanz-Gonzalez S, Ros M, Burks DJ, Valverde AM. Inhibition of PTP1B restores IRS1-mediated hepatic insulin signaling in IRS2-deficient mice. Diabetes 2010;59(3):588-99. https://doi.org/10.2337/db09-0796. Epub 2009/12/24 PubMed PMID: 20028942; PubMed Central PMCID: PMCPMC2828646.
  21. Xu J, Dong J, Ding H, Wang B, Wang Y, Qiu Z, et al. Ginsenoside compound K inhibits obesity-induced insulin resistance by regulation of macrophage recruitment and polarization via activating PPARgamma. Food Funct 2022;13(6):3561-71. https://doi.org/10.1039/d1fo04273d. Epub 2022/03/10 PubMed PMID: 35260867.
  22. Jiang L, Yin X, Chen YH, Chen Y, Jiang W, Zheng H, et al. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Theranostics 2021;11(4):1703-20. https://doi.org/10.7150/thno.43895. Epub 2021/01/08 PubMed PMID: 33408776; PubMed Central PMCID: PMCPMC7778584.
  23. Park K, Cho AE. Using reverse docking to identify potential targets for ginsenosides. Journal of Ginseng Research 2017;41(4):534-9. https://doi.org/10.1016/j.jgr.2016.10.005.
  24. Li S, Fu J, Wang Y, Hu C, Xu F. LncRNA MIAT enhances cerebral ischaemia/ reperfusion injury in rat model via interacting with EGLN2 and reduces its ubiquitin-mediated degradation. J Cell Mol Med 2021;25(21):10140-51. https://doi.org/10.1111/jcmm.16950. Epub 2021/10/24 PubMed PMID: 34687132; PubMed Central PMCID: PMCPMC8572800.
  25. Chua P, Lim WK. Optimisation of a PC12 cell-based in vitro stroke model for screening neuroprotective agents. Sci Rep 2021;11(1):8096. https://doi.org/10.1038/s41598-021-87431-4. Epub 2021/04/16 PubMed PMID: 33854099; PubMed Central PMCID: PMCPMC8046774.
  26. Peng Y, Zhang X, Zhang T, Grace PM, Li H, Wang Y, et al. Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain. Brain Behav Immun 2019;82:432-44. https://doi.org/10.1016/j.bbi.2019.09.013. Epub 2019/09/23 PubMed PMID: 31542403.
  27. Yao ZJ, Dong J, Che YJ, Zhu MF, Wen M, Wang NN, et al. TargetNet: a web service for predicting potential drug-target interaction profiling via multitarget SAR models. J Comput Aided Mol Des 2016;30(5):413-24. https:// doi.org/10.1007/s10822-016-9915-2. Epub 2016/05/12 PubMed PMID: 27167132.
  28. Liu Y, Grimm M, Dai WT, Hou MC, Xiao ZX, Cao Y, Cb-Dock. A web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol Sin 2020;41(1):138-44. https://doi.org/10.1038/s41401-019-0228-6. Epub 2019/07/03 PubMed PMID: 31263275; PubMed Central PMCID: PMCPMC7471403.
  29. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systemslevel datasets. Nat Commun 2019;10(1):1523. https://doi.org/10.1038/s41467-019-09234-6. Epub 2019/04/05 PubMed PMID: 30944313; PubMed Central PMCID: PMCPMC6447622.
  30. Zhang J, Chen B, Liang J, Han J, Zhou L, Zhao R, et al. Lanostane triterpenoids with PTP1B inhibitory and glucose-uptake stimulatory activities from mushroom fomitopsis pinicola collected in north America. J Agric Food Chem 2020;68(37):10036-49. https://doi.org/10.1021/acs.jafc.0c04460. Epub 2020/08/26 PubMed PMID: 32840371.
  31. Sun M, Izumi H, Shinoda Y, Fukunaga K. Neuroprotective effects of protein tyrosine phosphatase 1B inhibitor on cerebral ischemia/reperfusion in mice. Brain Res 2018;1694:1-12. https://doi.org/10.1016/j.brainres.2018.04.029. Epub 2018/05/01 PubMed PMID: 29705606.
  32. Cruz SA, Qin Z, Ricke KM, Stewart AFR, Chen HH. Neuronal protein-tyrosine phosphatase 1B hinders sensory-motor functional recovery and causes affective disorders in two different focal ischemic stroke models. Neural Regen Res 2021;16(1):129-36. https://doi.org/10.4103/1673-5374.286970. Epub 2020/08/14 PubMed PMID: 32788467; PubMed Central PMCID: PMCPMC7818877.
  33. Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng D, et al. PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging (Albany NY) 2021;13(3):3405-27. https://doi.org/10.18632/aging.202272. Epub 2021/01/27 PubMed PMID: 33495405; PubMed Central PMCID: PMCPMC7906217.
  34. Tonks NK. PTP1B: from the sidelines to the front lines. FEBS Lett 2003;546(1): 140-8. https://doi.org/10.1016/s0014-5793(03)00603-3. Epub 2003/06/28 PubMed PMID: 12829250.
  35. Sharma B, Xie L, Yang F, Wang W, Zhou Q, Xiang M, et al. Recent advance on PTP1B inhibitors and their biomedical applications. European Journal of Medicinal Chemistry 2020;199:112376. https://doi.org/10.1016/j.ejmech.2020.112376.
  36. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell 2017;169(3):381-405. https://doi.org/10.1016/j.cell.2017.04.001. Epub 2017/04/22 PubMed PMID: 28431241; PubMed Central PMCID: PMCPMC5546324.
  37. Traves PG, Pardo V, Pimentel-Santillana M, Gonzalez-Rodriguez A, Mojena M, Rico D, et al. Pivotal role of protein tyrosine phosphatase 1B (PTP1B) in the macrophage response to pro-inflammatory and anti-inflammatory challenge. Cell Death Dis 2014;5:e1125. https://doi.org/10.1038/cddis.2014.90. Epub 2014/03/15 PubMed PMID: 24625984; PubMed Central PMCID: PMCPMC3973223.
  38. Kanno T, Tsuchiya A, Tanaka A, Nishizaki T. Combination of PKCε activation and PTP1B inhibition effectively suppresses aβ-induced GSK-3β activation and tau phosphorylation. Molecular Neurobiology 2016;53(7):4787-97. https://doi.org/10.1007/s12035-015-9405-x.
  39. Feizi S. Protein tyrosine phosphatase-1B (PTP1B) regulates EGF-induced stimulation of corneal endothelial cell proliferation. J Ophthalmic Vis Res 2009;4(2):127-8. Epub 2009/04/01. PubMed PMID: 23198060; PubMed Central PMCID: PMCPMC3498550.
  40. Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML. PTP1B: a simple enzyme for a complex world. Crit Rev Biochem Mol Biol 2013;48(5):430-45. https://doi.org/10.3109/10409238.2013.819830. Epub 2013/07/25 PubMed PMID: 23879520.
  41. Wang H, Qu F, Xin T, Sun W, He H, Du L. Ginsenoside compound K promotes proliferation, migration and differentiation of schwann cells via the activation of MEK/ERK1/2 and PI3K/AKT pathways. Neurochem Res 2021;46(6):1400-9. https://doi.org/10.1007/s11064-021-03279-0. Epub 2021/03/20 PubMed PMID: 33738663.
  42. Lanahan AA, Lech D, Dubrac A, Zhang J, Zhuang ZW, Eichmann A, et al. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation 2014;130(11):902-9. https://doi.org/10.1161/CIRCULATIONAHA.114.009683. Epub 2014/07/02 PubMed PMID: 24982127;PubMed Central PMCID: PMCPMC6060619.
  43. Tu YF, Jiang ST, Chiang CW, Chen LC, Huang CC. Endothelial-specific insulin receptor substrate-1 overexpression worsens neonatal hypoxic-ischemic brain injury via mTOR-mediated tight junction disassembly. Cell Death Discov 2021;7(1):150. https://doi.org/10.1038/s41420-021-00548-3. Epub 2021/07/07 PubMed PMID: 34226528; PubMed Central PMCID: PMCPMC8257791.
  44. Amtul Z, Hill DJ, Arany EJ, Cechetto DF. Altered insulin/insulin-like growth factor signaling in a comorbid rat model of ischemia and beta-amyloid toxicity. Sci Rep 2018;8(1):5136. https://doi.org/10.1038/s41598-018-22985-4. Epub 2018/03/25 PubMed PMID: 29572520; PubMed Central PMCID: PMCPMC5865153.