DOI QR코드

DOI QR Code

A Review of Structural Testing Methods for ASIC based AI Accelerators

  • Umair, Saeed (Electronic Engineering Department, Quaid-e-Awam University of Engineering Science & Technology) ;
  • Irfan Ali, Tunio (Electronic Engineering Department, Quaid-e-Awam University of Engineering Science & Technology) ;
  • Majid, Hussain (Electronic Engineering Department, Quaid-e-Awam University of Engineering Science & Technology) ;
  • Fayaz Ahmed, Memon (Computer Systems Engineering, Quaid-e-Awam University of Engineering Science & Technology) ;
  • Ayaz Ahmed, Hoshu (Electronic Engineering Department, Quaid-e-Awam University of Engineering Science & Technology) ;
  • Ghulam, Hussain (Electronic Engineering Department, Quaid-e-Awam University of Engineering Science & Technology)
  • Received : 2023.01.05
  • Published : 2023.01.30

Abstract

Implementing conventional DFT solution for arrays of DNN accelerators having large number of processing elements (PEs), without considering architectural characteristics of PEs may incur overwhelming test overheads. Recent DFT based techniques have utilized the homogeneity and dataflow of arrays at PE-level and Core-level for obtaining reduction in; test pattern volume, test time, test power and ATPG runtime. This paper reviews these contemporary test solutions for ASIC based DNN accelerators. Mainly, the proposed test architectures, pattern application method with their objectives are reviewed. It is observed that exploitation of architectural characteristic such as homogeneity and dataflow of PEs/ arrays results in reduced test overheads.

Keywords

References

  1. G. Batra et. al., Artificial-intelligence hardware: New opportunities for semiconductor companies, McKinsey & Company, January 2019
  2. L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams et al., Recent advances in deep learning for speech research at Microsoft, in ICASSP, 2013.
  3. A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, in NIPS, 2012.
  4. N. P. Jouppi, C. Young, and et al., In-datacenter performance analysis of a tensor processing unit, in Proc. of the 44th Annual International Symposium on Computer Architecture, 2017, Conference Proceedings, pp. 1-12.
  5. C. Chen, A. Seff, A. Kornhauser, and J. Xiao, Deepdriving: Learning affordance for direct perception in autonomous driving, in ICCV, 2015.
  6. V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, "Efficient processing of deep neural networks: A tutorial and survey," in Proc. IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017. https://doi.org/10.1109/JPROC.2017.2761740
  7. K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in ICCV, 2015.
  8. Raju Machupalli, Masum Hossain, Mrinal Mandal, Review of ASIC accelerators for deep neural network, Microprocessors and Microsystems, Volume 89,2022,
  9. Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. & Applic. 32, 1109-1139 (2020). https://doi.org/10.1007/s00521-018-3761-1
  10. A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi and J. Kepner, Survey and Benchmarking of Machine Learning Accelerators, 2019 IEEE High Performance Extreme Computing Conference (HPEC), 2019, pp. 1-9.
  11. P. J. Bannon, "Accelerated Mathematical Engine," U.S. Patent 0 026 078 A1, Sep. 20, 2017.
  12. NVIDIA. (2019). JETSON TX2 High Performance AI at the Edge.[Online]. Available: https://www.nvidia.com/enus/autonomous-machines/embedded-systems/jetson-tx2/
  13. H. K. Lau, J. Ferguson, E. Griffiths, R. Singhal, and L. Harison, Enabling DFT and fast silicon bring-up for massive AI chip - case study, in International Test Conference (ITC), 2019, Conference Proceedings.
  14. H. Ma, R. Guo, Q. Jing, J. Han, Y. Huang, R. Singhal, W. Yang, X.Wen, and F. Meng, "A case study of testing strategy for AI SoC," in Proc. IEEE Int. Test Conf. Asia (ITC-Asia), Tokyo, Japan, Sep. 2019, pp. 61-66.
  15. Y.-H. Chen, T.-J. Yang, J. S. Emer, and V. Sze, "Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices," IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292-308, Jun. 2019. https://doi.org/10.1109/jetcas.2019.2910232
  16. M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic, E. Cosatto, and H. P. Graf, "A massively parallel coprocessor for convolutional neural networks," in Proc. 20th IEEE Int. Conf. Appl. Specific Syst., Archit. Processors, USA, Jul. 2009, pp. 53-60.
  17. L. Cavigelli, D. Gschwend, C. Mayer, S.Willi, B. Muheim, and L. Benini, "Origami: A convolutional network accelerator," in Proc. 25th Ed. Great Lakes Symp. (VLSI), 2015, pp. 199-204.
  18. S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, "A dynamically configurable coprocessor for convolutional neural networks," in Proc. 37th Annu. Int. Symp. Comput. Archit. (ISCA), 2010, pp. 247-257.
  19. A. Gebregiorgis et al., Error propagation aware timing relaxation for approximate near threshold computing, in Proceedings of the 54th Annual Design Automation Conference (DAC), pp. 1-6, 2017.
  20. Li, Guanpeng, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik Pattabiraman, Joel Emer, and Stephen W. Keckler. Understanding error propagation in deep learning neural network (DNN) accelerators and applications. in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-12. 2017.
  21. Younis Ibrahim, Haibin Wang, Junyang Liu, Jinghe Wei, Li Chen, Paolo Rech, Khalid Adam, Gang Guo, Soft errors in DNN accelerators: A comprehensive review, Microelectronics Reliability, Vol. 115, 2020.
  22. J. J. Zhang, T. Gu, K. Basu, and S. Garg, "Analyzing and mitigating the impact of permanent faults on a systolic array based neural network accelerator," in Proc. IEEE 36th VLSI Test Symp. (VTS), USA, Apr. 2018, pp. 1-6.
  23. S. Kundu, S. Banerjee, A. Raha, S. Natarajan and K. Basu, Toward Functional Safety of Systolic Array-Based Deep Learning Hardware Accelerators, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 3, pp. 485-498, March 2021. https://doi.org/10.1109/TVLSI.2020.3048829
  24. J. Rajski et al., Embedded deterministic test for low cost manufacturing test, Proceedings. International Test Conference (ITC), 2002, pp. 301-310,
  25. B. Lu et al., The test cost reduction benefits of combining a hierarchical DFT methodology with EDT channel sharing-A case study, 2018 13th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS), Taormina, 2018, pp. 1-4.
  26. George, Kiran, and Chien-In Henry Chen. Logic built-in self-test for core-based designs on system-on-a-chip. IEEE Transactions on Instrumentation and Measurement 58, no. 5 (2009): 1495-1504. https://doi.org/10.1109/TIM.2008.2009417
  27. N. Mukherjee et al., Time and Area Optimized Testing of Automotive ICs, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 1, pp. 76-88, Jan. 2021. https://doi.org/10.1109/TVLSI.2020.3025138
  28. R. Singhal, "AI chip DFT techniques for aggressive timeto-market," Mentor, Siemens Bus., White Paper, 2019.
  29. H. K. Lau, J. Ferguson, E. Griffiths, R. Singhal, and L. Harison, Enabling DFT and fast silicon bring-up for massive AI chip - case study, in International Test Conference, 2019, Conference Proceedings.
  30. H. Ma et al., A Case Study of Testing Strategy for AI SoC, 2019 IEEE International Test Conference in Asia (ITC-Asia), 2019, pp. 61-66,
  31. Kung, Why systolic architectures?, in Computer, vol. 15, no. 1, pp. 37-46, Jan. 1982 https://doi.org/10.1109/MC.1982.1653825
  32. U. S. Solangi, M. Ibtesam and S. Park, Time multiplexed LBIST for in-field testing of automotive AI accelerators, IEICE Electronics Express, 2021, Volume 18, Issue 24, Pages 20210451
  33. W. H. Kautz, "Testing for faults in combinational cellular logic arrays," in Proc. 8th Annu. Symp. Switching Automata Theory (SWAT), Austin, TX, USA, 1967, pp. 161-174,
  34. A. D. Friedman, "Easily testable iterative systems," IEEE Trans. Comput., vol. C-22, no. 12, pp. 1061-1064, Dec. 1973, https://doi.org/10.1109/T-C.1973.223651
  35. C.-H. Sung, "Testable sequential cellular arrays," IEEE Trans. Comput.,.vol. C-25, no. 1, pp. 11-18, Jan. 1976, https://doi.org/10.1109/TC.1976.5009199
  36. H. Elhuni, A. Vergis, and L. Kinney, "C-testability of twodimensional iterative arrays," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. CAD-5, no. 4, pp. 573- 581, Oct. 1986, doi: 10.1109/TCAD.1986.1270228.
  37. F. Lombardi, "On a new class of C-testable systolic arrays," Integration, vol. 8, pp. 269-283, Dec. 1989, https://doi.org/10.1016/0167-9260(89)90020-5
  38. W. R. Moore and V. Bawa, "Testability of a VLSI systolic array," in Proc. 11th Eur. Solid-State Circuits Conf. (ESSCIRC), Toulouse, France, Sep. 1985, pp. 271-276,
  39. S.-K. Lu, J.-C. Wang, and C.-W. Wu, "C-testable design techniques for iterative logic arrays," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no. 1, pp. 146-152, Mar. 1995, https://doi.org/10.1109/92.365462
  40. A. Chaudhuri, C. Liu, X. Fan and K. Chakrabarty, C-Testing and Efficient Fault Localization for AI Accelerators, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021
  41. U. S. Solangi, M. Ibtesam, M. A. Ansari, J. Kim and S. Park, Test Architecture for Systolic Array of Edge-Based AI Accelerator, in IEEE Access, vol. 9, pp. 96700-96710, 2021, https://doi.org/10.1109/ACCESS.2021.3094741
  42. M. Ibtesam, U. S. Solangi, J. Kim, M. A. Ansari and S. Park, Reliable Test Architecture With Test Cost Reduction for Systolic-Based DNN Accelerators, in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1537-1541, March 2022, doi: 10.1109/TCSII.2021.3108415.
  43. M. Sadi and U. Guin, Test and Yield Loss Reduction of AI and Deep Learning Accelerators, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 1, pp. 104-115, Jan. 2022, doi: 10.1109/TCAD.2021.3051841.
  44. U. S. Solangi, M. Ibtesam and S. Park, Master-slave based test cost reduction method for DNN accelerators, IEICE Electronics Express, 2021, Volume 18, Issue 24, Pages 20210425
  45. S. Han et al., Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint arXiv:1510.00149, 2015.
  46. J. Yu et al., Scalpel: Customizing dnn pruning to the underlying hardware parallelism, in Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 548-560, ACM, 2017.
  47. H. Li et al., Pruning filters for efficient convnets, arXiv preprint arXiv:1608.08710, 2016.
  48. S. Anwar et al., Structured pruning of deep convolutional neural networks, ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 13, no. 3, p. 32, 2017.
  49. P. Molchanov et al., Pruning convolutional neural networks for resource efficient inference, 2016.