DOI QR코드

DOI QR Code

이온 선택성 전극을 이용한 탄산칼슘 형성 특성 연구 : 마그네슘-칼슘 비율과 반응 온도의 영향

Characterization of CaCO3 Formation Using an Ion Selective Electrode : Effects of the Mg/Ca Ratio and Temperature

  • 한미송 (한국지질자원연구원 기후변화대응연구본부) ;
  • 최병영 (한국지질자원연구원 기후변화대응연구본부) ;
  • 이승우 (한국지질자원연구원 기후변화대응연구본부) ;
  • 박진영 (한국지질자원연구원 기후변화대응연구본부) ;
  • 채수천 (한국지질자원연구원 기후변화대응연구본부) ;
  • 방준환 (한국지질자원연구원 기후변화대응연구본부) ;
  • 송경선 (한국지질자원연구원 기후변화대응연구본부)
  • Misong Han (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Byoung-Young Choi (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Seung-Woo, Lee (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jinyoung Park (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Soochun Chae (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jun-Hwan Bang (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kyungsun Song (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2023.01.02
  • 심사 : 2023.02.03
  • 발행 : 2023.04.10

초록

이산화탄소 순환 물질 중 대표적인 광물인 탄산칼슘의 형성 과정을 관찰하고, 대표적 조절 변수인 마그네슘-칼슘 이온의 혼합 비율(Mg/Ca 비)과 온도가 pre-nucleation cluster (PNC) 및 탄산칼슘 형성에 미치는 영향을 분석하고자 실험과정에서 칼슘 이온 선택성 전극(calcium ion selective electrode, Ca ISE)을 이용하여 핵형성 과정을 연구하였다. 실험결과 미량의 결정이 형성되었으며 표면 원소 분석을 위해 에너지 분산 X선 분석법(energy dispersive X-ray spectroscopy, EDS)을 사용하였고, 형상 분석을 위해 주사 전자 현미경(field emission scanning electron microscope, FE-SEM)을 사용하였다. Mg/Ca 비와 온도 조건에 따라 다양한 형상의 결정질 탄산칼슘(방해석, 아라고나이트 등)을 확인하였으며 Ca ISE로부터 얻은 칼슘 이온 농도 그래프는 탄산칼슘 형성 과정을 보여주었다. 칼슘 이온 농도 그래프 분석을 통해 마그네슘 이온은 칼슘 이온과 탄산 이온의 결합을 방해하고 PNC 간 응집을 지연시켜 핵형성 및 탄산칼슘의 형성을 지연시킴을 확인하였다. 반면 온도는 이와 반대되는 효과를 보였으며, 본 실험 조건에서는 마그네슘 이온보다 더 큰 영향을 미쳤다. 또한 Mg/Ca 비와 온도에 따라 탄산칼슘의 형상이 뚜렷하게 변화하여 두 인자는 탄산칼슘 형성 과정에 전반적으로 영향을 미치는 중요 조절 변수임을 확인하였다.

The nucleation mechanism was studied using a calcium ion selective electrode (Ca ISE) to observe the formation of CaCO3, a representative mineral in the CO2 cycle, and to analyze the effect of the Mg/Ca-ratio and temperature on the formation of pre-nucleation cluster (PNC) and CaCO3. As a result of the experiment, a small amount of crystal was formed. Energy dispersive X-ray spectroscopy (EDS) was used for surface element analysis, and a field emission scanning-electron microscope (FE-SEM) was used for the morphology analysis of synthesized carbonates. These results showed that various shapes of crystalline CaCO3 (calcite, aragonite, etc.) were observed for each Mg/Ca ratio and temperature. In addition, the calibration plot obtained from Ca ISE showed information on the formation process of CaCO3. Our results showed that as magnesium ions interfered with the binding of calcium and carbonate ions and delayed the aggregation between PNCs, the nucleation and formation of CaCO3 were delayed. On the other hand, the temperature showed an opposite trend as compared to the effect of magnesium under our experimental conditions, indicating that temperature accelerated the formation of CaCO3. Furthermore, the morphology of CaCO3 clearly changed according to the Mg/Ca ratio and temperature, and it was confirmed that the two factors are very important for CaCO3 formation in that they could affect the overall process.

키워드

과제정보

본 연구는 2022년 과학기술정보통신부 주요 사업인 "핵생성 이전단계 연구를 포함한 탄산염광물의 생성 반응경로 규명"의 연구지원으로 수행되었습니다.

참고문헌

  1. E. Y. Kwon and Y. K. Cho, The impact of the oceanic biological pump on atmospheric CO2 and its link to climate change, J. Korean Soc. Oceanogr. 18, 266-276 (2013).
  2. R. A. Feely, C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero, Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362-366 (2004). https://doi.org/10.1126/science.1097329
  3. F. Joos, T. L. Frolicher, M. Steinacher, and G.-K. Plattner, Ocean Acidification, J.-P. Gattuso and L. Hansson, 1st ed., 272-290, Oxford University Press, Oxford, England (2011).
  4. N. Gruber, C. Hauri, Z. Lachkar, D. Loher, T. L. Frolicher, and G.-K. Plattner, Rapid progression of ocean acidification in the california current system, Science, 337, 220-223 (2012). https://doi.org/10.1126/science.1216773
  5. J. Zhang, C. Dong, Y. Sun, and J. Yu, Mechanism of magnesium's influence on calcium carbonate crystallization: Kinetically controlled multistep crystallization, Cryst. Res. Technol., 53, 1800075 (2018).
  6. J. Zhang, X. Zhou, C. Dong, Y. Sun, and J. Yu, Investigation of amorphous calcium carbonate's formation under high concentration of magnesium: The prenucleation cluster pathway, J. Cryst. Growth, 494, 8-16 (2018). https://doi.org/10.1016/j.jcrysgro.2018.05.001
  7. D. Gebauer, A. Volkel, and H. Colfen, Stable prenucleation calcium carbonate clusters, Science, 322, 1819-1822 (2008). https://doi.org/10.1126/science.1164271
  8. D. Gebauer and H. Colfen, Prenucleation clusters and non-classical nucleation, Nano Today, 6, 564-584 (2011). https://doi.org/10.1016/j.nantod.2011.10.005
  9. D. Gebauer, M. Kellermeier, J. D. Gale, L. Bergstrom, and H. Colfen, Pre-nucleation clusters as solute precursors in crystallisation, Chem. Soc. Rev., 43, 2348-2371 (2014). https://doi.org/10.1039/c3cs60451a
  10. E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. de With, and N. A. J. M. Sommerdijk, The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM, Science, 323, 1455-1458 (2009). https://doi.org/10.1126/science.1169434
  11. M. Kellermeier, A. Picker, A. Kempter, H. Colfen, and D. Gebauer, A straightforward treatment of activity in aqueous CaCO3 solutions and the consequences for nucleation theory, Adv. Mater., 26, 752-757 (2014). https://doi.org/10.1002/adma.201303643
  12. A. Verch, M. Antonietti, and H. Colfen, Mixed calcium-magnesium pre-nucleation clusters enrich calcium, Z. Kristallogr. Cryst. Mater., 227, 718-722 (2012). https://doi.org/10.1524/zkri.2012.1529
  13. Y. Politi, D. R. Batchelor, P. Zaslansky, B. F. Chmelka, J. C. Weaver, I. Sagi, S. Weiner, and L. Addadi, Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: A structure-function investigation, Chem. Mater., 22, 161-166 (2010). https://doi.org/10.1021/cm902674h
  14. P. Raiteri, R. Demichelis, and J. D. Gale, Thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation, J. Phys. Chem. C, 119, 24447-24458 (2015). https://doi.org/10.1021/acs.jpcc.5b07532
  15. J. W. Morse, Q. Wang, and M. Y. Tsio, Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater, Geology, 25, 85-87 (1997). https://doi.org/10.1130/0091-7613(1997)025<0085:IOTAMC>2.3.CO;2
  16. S. Fermani, B. N. Dzakula, M. Reggi, G. Falini, and D. Kralj, Effects of magnesium and temperature control on aragonite crystal aggregation and morphology, CrystEngComm, 19, 2451-2455 (2017). https://doi.org/10.1039/C7CE00197E
  17. R. M. Santos, P. Ceulemans, and T. V. Gerven, Synthesis of pure aragonite by sonochemical mineral carbonation, Chem. Eng. Res. Des., 90, 715-725 (2012). https://doi.org/10.1016/j.cherd.2011.11.022
  18. T. Chen, A. Neville, and M. Yuan, Influence of Mg2+ on CaCO3 formation-bulk precipitation and surface deposition, Chem. Eng. Sci., 61, 5318-5327 (2006). https://doi.org/10.1016/j.ces.2006.04.007
  19. R. G. Compton and C. A. Brown, The inhibition of calcite dissolution/precipitation: Mg2+ cations, J. Colloid Interface Sci., 165, 445-449 (1994). https://doi.org/10.1006/jcis.1994.1248
  20. M. Boon, W. D. A. Rickard, A. L. Rohl, and F. Jones, Stabilization of aragonite: Role of Mg2+ and other impurity ions, Cryst. Growth Des., 20, 5006-5017 (2020). https://doi.org/10.1021/acs.cgd.0c00152
  21. G. W. Akin and J. V. Lagerwerff, Calcium carbonate equilibria in solutions open to the air. II. Enhanced solubility of CaCO3 in the presence of Mg2+ and SO42-, Geochim. Cosmochim. Acta, 29, 353-360 (1965). https://doi.org/10.1016/0016-7037(65)90026-8
  22. A. Korchef and M. Touaibi, Effect of pH and temperature on calcium carbonate precipitation by CO2 removal from iron-rich water, Water Environ. J., 34, 331-341 (2020). https://doi.org/10.1111/wej.12467
  23. H. L. Lee, Ion-selective electrodes, The Magazine of the IEIE, 13, 36-43 (1986).
  24. G. Dimeski, T. Badrick, and A. St John, Ion selective electrodes (ISEs) and interferences-A review, Clin. Chim. Acta, 411, 309-317 (2010). https://doi.org/10.1016/j.cca.2009.12.005
  25. L. Brecevic and A. E. Nielsen, Solubility of amorphous calcium carbonate, J. Cryst. Growth, 98, 504-510 (1989). https://doi.org/10.1016/0022-0248(89)90168-1
  26. Z. Hu and Y. Deng, Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants, J. Colloid Interface Sci., 266, 359-365 (2003).