DOI QR코드

DOI QR Code

Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction

중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용

  • Yoonmo Koo (Department of Chemical Engineering (Integrated Engineering), Kyung Hee University) ;
  • Youngbin Lee (Department of Chemical Engineering (Integrated Engineering), Kyung Hee University) ;
  • Kyungmin Im (Department of Chemical Engineering (Integrated Engineering), Kyung Hee University) ;
  • Jinsoo Kim (Department of Chemical Engineering (Integrated Engineering), Kyung Hee University)
  • 구윤모 (경희대학교 화학공학과) ;
  • 이영빈 (경희대학교 화학공학과) ;
  • 임경민 (경희대학교 화학공학과) ;
  • 김진수 (경희대학교 화학공학과)
  • Received : 2023.02.14
  • Accepted : 2023.03.13
  • Published : 2023.04.10

Abstract

To improve the efficiency of water electrolysis, it is essential to develop an oxygen evolution reaction (OER) electrocatalyst with high performance and long-term stability, accelerating the reaction rate of OER. In this study, a hollow metal-organic framework (MOF)-derived ruthenium-cobalt oxide catalyst was developed to synthesize an efficient OER electrocatalyst. As the synthesized catalyst increases the surface exposure of ruthenium, a low overpotential (386 mV) was observed at a current density of 10 mA/cm2 with a low Tafel slope. It is expected to be able to replace noble metal catalysts by showing higher mass activity and stability than commercial RuO2 catalysts.

물의 전기 분해 효율을 향상시키기 위해 산소발생반응(OER)의 반응 속도를 가속화하며 고성능과 장기 안정성을 가진 OER 전기촉매 개발이 필수적이다. 본 연구에서는 고효율의 OER 전기촉매를 합성하기 위해 중공 금속-유기골격체 (MOF)로부터 유도된 루테늄-코발트 산화물 촉매를 개발하였다. 합성된 촉매는 루테늄의 표면 노출을 증대시킴으로 낮은 Tafel 기울기와 10 mA/cm2의 전류밀도에서 386 mV의 낮은 과전위가 관찰되었다. 또한 상용 RuO2 촉매 대비 높은 질량 활성과 안정성을 보여, 귀금속 촉매를 대체할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 한국연구재단 4단계 BK21 사업과 선도연구센터 사업(2021R1A5A6002853)으로부터 지원받은 연구임.

References

  1. Z. Angeles-Olvera, A. Crespo-Yapur, O. Rodriguez, J. L. Cholula-Diaz, L. M. Martinez, and M. Videa, Nickel-based electrocatalysts for water electrolysis, Energies, 15, 1609 (2022).
  2. S.-Y. Bae, J. Mahmood, I.-Y. Jeon, and J.-B. Baek, Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction, Nanoscale Horiz., 5, 43-56 (2020). https://doi.org/10.1039/c9nh00485h
  3. C. H. Chen, D. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K. Dong, S. Z. Qiao, H. Liu, and X. W. Du, Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution, Adv. Energy Mater., 9, 1803913 (2019).
  4. Z. Chen, W. Gong, S. Cong, Z. Wang, G. Song, T. Pan, X. Tang, J. Chen, W. Lu, and Z. Zhao, Eutectoid-structured wc/w2c heterostructures: A new platform for long-term alkaline hydrogen evolution reaction at low overpotentials, Nano Energy, 68, 104335 (2020).
  5. M. Gong and H. Dai, A mini review of nife-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res., 8, 23-39 (2015). https://doi.org/10.1007/s12274-014-0591-z
  6. M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, An advanced ni-fe layered double hydroxide electrocatalyst for water oxidation, J. Am. Chem. Soc., 135, 8452-8455 (2013). https://doi.org/10.1021/ja4027715
  7. P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, and H. Pang, Rechargeable zinc-air batteries: A promising way to green energy, J. Mater. Chem. A, 5, 7651-7666 (2017). https://doi.org/10.1039/C7TA01693J
  8. Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions, Chem. Soc. Rev., 44, 2060-2086 (2015). https://doi.org/10.1039/C4CS00470A
  9. X. Kong, K. Xu, C. Zhang, J. Dai, S. Norooz Oliaee, L. Li, X. Zeng, C. Wu, and Z. Peng, Free-standing two-dimensional Ru nanosheets with high activity toward water splitting, ACS Catal., 6, 1487-1492 (2016). https://doi.org/10.1021/acscatal.5b02730
  10. Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, and H. Dai, Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts, J. Am. Chem. Soc., 134, 3517-3523 (2012). https://doi.org/10.1021/ja210924t
  11. X. F. Lu, L. Yu, and X. W. Lou, Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts, Sci. Adv., 5, eaav6009 (2019).
  12. A. Radwan, H. Jin, D. He, and S. Mu, Design engineering, synthesis protocols, and energy applications of mof-derived electrocatalysts, Nano-Micro Lett., 13, 132 (2021).
  13. M. A. Rahman, X. Wang, and C. Wen, High energy density metal-air batteries: A review, J. Electrochem. Soc., 160, A1759 (2013).
  14. C. Rosler, A. Aijaz, S. Turner, M. Filippousi, A. Shahabi, W. Xia, G. Van Tendeloo, M. Muhler, and R. A. Fischer, Hollow Zn/Co zeolitic imidazolate framework (ZIF) and yolk-shell metal@Zn/Co ZIF nanostructures, Chem. Eur. J., 22, 3304-3311 (2016). https://doi.org/10.1002/chem.201503619
  15. F. J. Sarabia, P. Sebastian-Pascual, M. T. Koper, V. Climent, and J. M. Feliu, Effect of the interfacial water structure on the hydrogen evolution reaction on Pt (111) modified with different nickel hydroxide coverages in alkaline media, ACS Appl. Mater. Interfaces, 11, 613-623 (2018).
  16. R. Sharma, Y. Wang, F. Li, J. Chamier, and S. M. Andersen, Particle size-controlled growth of carbon-supported platinum nanoparticles (Pt/C) through water-assisted polyol synthesis, ACS Omega, 4, 15711-15720 (2019).
  17. K. Talukdar, S. Delgado, T. Lagarteira, P. Gazdzicki, and K. A. Friedrich, Minimizing mass-transport loss in proton exchange membrane fuel cell by freeze-drying of cathode catalyst layers, J. Power Sources, 427, 309-317 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.094
  18. L. Tian, Y. Liu, C. He, S. Tang, J. Li, and Z. Li, Hollow heterostructured nanocatalysts for boosting electrocatalytic water splitting, Chem. Rec., 23, e202200213 (2022).
  19. L. C. Varanda, C. G. Souza, D. A. Moraes, H. R. Neves, J. B. SOUZA, M. F. Silva, R. A. Bini, R. F. Albers, T. L. Silva, and W. Beck, Size and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. A brief review, An. Acad. Bras. Cienc., 91, e20181180 (2019).
  20. J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, and X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting, Adv. Mater., 28, 215-230 (2016). https://doi.org/10.1002/adma.201502696
  21. T. Wang, X. Wang, Y. Liu, J. Zheng, and X. Li, A highly efficient and stable biphasic nanocrystalline Ni-Mo-N catalyst for hydrogen evolution in both acidic and alkaline electrolytes, Nano Energy, 22, 111-119 (2016). https://doi.org/10.1016/j.nanoen.2016.02.023
  22. J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, and Y. Li, Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene, Angew. Chem. Int. Ed., 127, 11039-11043 (2015). https://doi.org/10.1002/ange.201504242
  23. Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo, X. Li, Y. Tang, H. Li, B. Dong, and C. Zhi, Dendrites in Zn-based batteries, Adv. Mater., 32, 2001854 (2020).
  24. F. Zeng, C. Mebrahtu, L. Liao, A. K. Beine, and R. Palkovits, Stability and deactivation of OER electrocatalysts: A review, J. Energy Chem., 69, 301-329 (2022). https://doi.org/10.1016/j.jechem.2022.01.025
  25. K. Zhu, M. Li, X. Li, X. Zhu, J. Wang, and W. Yang, Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeOx shell, Chem. Commun., 52, 11803-11806 (2016). https://doi.org/10.1039/C6CC04951F
  26. K. Zhu, X. Zhu, and W. Yang, Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts, Angew. Chem. Int. Ed., 58, 1252-1265 (2019). https://doi.org/10.1002/anie.201802923
  27. X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44, 5148-5180 (2015).  https://doi.org/10.1039/C4CS00448E