DOI QR코드

DOI QR Code

Antibacterial and Antiviral Activities of Microwave-assisted Thuja orientalis Extracts

마이크로웨이브를 이용한 측백나무 추출물의 항균 및 항바이러스 특성

  • Sangwon Ko (Transportation Environmental Research Department, Korea Railroad Research Institute) ;
  • Jae-Young Lee (Transportation Environmental Research Department, Korea Railroad Research Institute) ;
  • Seong-Hyeon Kim (Department of BioNano Technology, Gachon University) ;
  • Young-Chul Lee (Department of BioNano Technology, Gachon University)
  • 고상원 (한국철도기술연구원 교통환경연구실) ;
  • 이재영 (한국철도기술연구원 교통환경연구실) ;
  • 김성현 (가천대학교 바이오나노학과) ;
  • 이영철 (가천대학교 바이오나노학과)
  • Received : 2023.01.31
  • Accepted : 2023.02.17
  • Published : 2023.04.10

Abstract

In this study, the components of microwave-assisted extracts obtained from Thuja orientalis leaves were analyzed, and the cytotoxicity, antibacterial and antiviral activities were evaluated. The predominant components from microwave-assisted extraction were catechin, leucopelargonidin, arecatannin, quinolone, and kaempferol derivatives, which are classified in the flavonoid and tannin groups. We observed that the 0.11 mg/mL of extract concentration did not show cytotoxicity in HaCaT cells. The antibacterial activities were tested according to the guidelines of methods for determining the bactericidal activity of antimicrobial agents. The extracts showed 99.9% antibacterial efficiency against gram-positive S. aureus, while the antibacterial effect on gram-negative E. coli was insignificant. When the extract concentration and contact time with bacteria were increased, 99.9% antibacterial efficiency was observed for E. coli as well as S. aureus. Following the standard to assess the activity of microbicides against viruses in suspension (ASTM-E1052-20), the antiviral efficiency was more than 99.99% for influenza A (H1N1) and SARS-CoV-2. These results suggest its potential use in antiviral disinfectants, surface coatings, personal protective equipment, and textiles.

본 연구에서는 마이크로웨이브를 이용하여 추출한 측백나무 잎의 성분을 분석하고 세포독성, 항균 및 항바이러스 활성을 평가하였다. 마이크로웨이브 추출법에 따른 주요 성분은 catechin, leucopelargonidin, arecatannin, quinolone 및 kaempferol 유도체 등으로 나타나 플라보노이드와 탄닌 계열 물질을 함유하고 있는 것을 확인하였다. 인간 상피세포 (HaCaT)를 대상으로 한 세포독성 평가에서는 0.11 mg/mL 농도에서 독성이 나타나지 않음을 보였다. 항균 성능은 외용 소독제(의약외품) 효력평가법 가이드라인에 따라 측정하였으며 1.11 mg/mL 농도에서는 그람 음성균인 대장균에 대해 항균 효과가 낮은 반면, 그람 양성균인 황색포도상구균에 대해서는 99.9%의 항균 효율을 나타내었다. 또한, 추출물의 농도를 높이고 균과의 접촉 시간을 증가시킬 경우 대장균에 대해서도 99.9%의 항균 효율을 나타낼 수 있음을 보였다. 항균 활성 외에도 바이러스에 대한 살균제의 활성을 측정하는 표준(ASTM E1052-20)에 따라 평가 결과 인플루엔자 A (H1N1)와 SARS-CoV-2에 대해 99.99% 이상의 항바이러스 활성을 가지고 있음을 확인하였다. 이 결과들은 측백나무 추출물이 항바이러스 소독제나 표면 코팅제, 개인 보호용구 및 방역용 섬유 소재로서 응용될 수 있음을 시사한다.

Keywords

Acknowledgement

본 연구는 한국철도기술연구원 주요사업 연구비 지원으로 수행되었습니다(PK2303F2).

References

  1. M. Musarra-Pizzo, R. Pennisi, I. Ben-Amor, G. Mandalari, and M.T. Sciortino, Antiviral activity exerted by natural products against human viruses. Viruses, 13, 828 (2021).
  2. L.-T. Lin, W.-C. Hsu, and C.-C. Lin, Antiviral natural products and herbal medicines, J. Tradit. Complement. Med., 4, 24-35 (2014). https://doi.org/10.4103/2225-4110.124335
  3. A. da S. Antonio, L. S. M. Wiedemann, and V. F. Veiga-Junior, Natural products' role against COVID-19, RSC Adv., 10, 23379-23393 (2020). https://doi.org/10.1039/d0ra03774e
  4. A, Frediansyah, F. Sofyantoro, S. Alhumaid, A. Al Mutair, H. Albayat, H. I. Altaweil, H. M. Al-Afghani, A. A. AlRamadhan, M. R. AlGhazal, S. A. Turkistani, A. A. Abuzaid, and A. A. Rabaan, Microbial natural products with antiviral activities, including anti-SARS-CoV-2: A Review, Molecules, 27, 4305 (2022).
  5. K. Hwang, Antiviral activity of chitosan, chitin, and polysaccharides derived from seaweed, J. Chitin Chitosan, 25, 93-104 (2020). https://doi.org/10.17642/jcc.25.2.6
  6. Y. Jeong, L. T. Thuy, S. H. Ki, S. Ko, S. Kim, W. K. Cho, J. S. Choi, and S. M. Kang, Multipurpose antifouling coating of solid surfaces with the marine-derived polymer fucoidan, Macromol. Biosci. 18, 1800137 (2018).
  7. S. Kim, J.-M. Moon, J. S. Choi, W. K. Cho, and S. M. Kang, Mussel-inspired approach to constructing robust multilayered alginate films for antibacterial applications, Adv. Fuct. Mater., 26, 4099-4105 (2016). https://doi.org/10.1002/adfm.201600613
  8. B. Kaczmarek, Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview, Materials, 13, 3224 (2020).
  9. S. Ko, J.-Y. Lee, and D. Park, Recent progress of antibacterial coatings on solid substrates through antifouling polymers, Appl. Chem. Eng., 32, 371-378 (2021). https://doi.org/10.14478/ACE.2021.1048
  10. T. P. T. Cushnie and A. J. Lamb, Antimicrobial activity of flavonoids, Int. J. Antimicrob. Agents, 26, 343-356 (2005). https://doi.org/10.1016/j.ijantimicag.2005.09.002
  11. H. J. Jeong, S. H. Xuan, B. R. Song, S. L. Lee, Y. J. Lee, and S. N. Park, Antimicrobial and antioxidant activities of Perilla frutescens var. acuta extract and its fraction and their component analyses, Appl. Chem. Eng., 29, 716-725 (2018). https://doi.org/10.14478/ACE.2018.1077
  12. J.-H. Kwon, T.-Y. Kim, J.-K. Kim, and J.-Y. Kim, Characteristics of Opuntia monacantha Haw. for the functional raw material production, Appl. Chem. Eng., 28, 252-256 (2017). https://doi.org/10.14478/ACE.2017.1013
  13. M. J. Khubeiz, G. Mansour, and B. Zahraa, Antibacterial and phytochemical investigation of Thuja orientalis (L.) leaves essential oil from Syria, Int. J. Curr. Pharm. Res., 7, 243-247 (2016).
  14. H.-Y. Ahn, S.-J. Heo, M.-J. Kang, J.-H. Lee, J.-Y. Cha, and Y.-S. Cho, Antioxidative activity and chemical characteristics of leaf and fruit extracts from Thuja orientalis, J. Life Sci., 21, 746-752 (2011). https://doi.org/10.5352/JLS.2011.21.5.746
  15. J.-H. Mo and S.-J. Oh, Tyrosinase inhibitory activity and melanin production inhibitory activity of extract of Thuja orientalic, Kor. J. Aesthet. Cosmetol., 13, 189-194 (2015).
  16. T. H. Youm and H. B. Lim, Antimicrobial activities of organic extracts from fruit of Thuja orientalis L., J. Medicinal Crop Sci., 18, 315-322 (2010).
  17. R. K. Jain and S.C Garg, Antimicrobial activity of the essential oil of Thuja orientalis L, Anc. Sci. Life, 16, 186-189 (1997).
  18. S. N. Sah, S. Regmi, and M. K. Tamang, Antibacterial effects of Thuja leaves extract, J. Medicinal Crop Sci., 18, 315-322 (2010).
  19. K.-J. Kang and J.-S. Kim, Effects of hinokitiol extract of Thuja orientalis on shelf-life of bread, J. Korean Soc. Food Sci. Nutr., 29, 624-628 (2000).
  20. J.-N. Won, S.-Y. Lee, D. Song, and H. Poo, Antiviral activity of the plant extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii against influenza virus A/PR/8/34. J. Microbiol. Biotechnol., 23, 125-130 (2013). https://doi.org/10.4014/jmb.1210.10074
  21. E. K. F. Elbeshehy, E. M. R. Metwali, and O. A. Almaghrabi, Antiviral activity of Thuja orientalis extracts against watermelon mosaic virus (WMV) on Citrullus lanatus, Saudi J. Biol. Sci., 22, 211-219 (2015) https://doi.org/10.1016/j.sjbs.2014.09.012
  22. H. T. Hoang, J. S. Park, S. H. Kim, J.-Y. Moon, and Y.-C. Lee, Microwave-assisted Dendropanax morbifera extract for cosmetic applications, Antioxidants, 11, 998 (2022).
  23. D. Pinto, A. M. Silva, V. Freitas, A. Vallverdu-Queralt, C. DelerueMatos, and F. Rodrigues, Microwave-assisted extraction as a green technology approach to recover polyphenols from Castanea sativa Shells, ACS Food Sci. Technol., 1, 229-241 (2021). https://doi.org/10.1021/acsfoodscitech.0c00055
  24. S. Ko, J.-Y. Lee, and D. Park, Antibacterial and antiviral activities of multi-coating polyester textiles, Appl. Chem. Eng., 33, 444-450 (2022). https://doi.org/10.14478/ACE.2022.1083
  25. X. Chen, Y. He, and Y. Deng, Chemical composition, pharmacological, and toxicological effects of betal nut, Evid.-based Complement. Altern. Med., 2021, 1808081 (2021).
  26. M. Suda, K. Takanashi, M. Katoh, K. Matsumoto, K, Kawaguchi, S. Kawahara, H. Fujii, and H. Makabe, Synthesis of arecatannin A1 from dimeric epicatechin electrophile, Nat. Prod. Commun., 10, 959-962 (2015).
  27. I. T. Kusumoto, T. Nakabayashi, H. Kida, H. Miyashiro, M. Hattori, T. Namba, K. Shimotohno, Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease, Phytother. Res., 9, 180-184 (1995). https://doi.org/10.1002/ptr.2650090305
  28. B. Kaczmarek, Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview, Materials, 13, 3224 (2020).
  29. J. J. Hilliard, H. M. Krause, J. I. Bernstein, J. A. Fernandez, V. Nguyen, K. A. Ohemeng, and J. F. Barrett, A comparison of active site binding of 4-quinolones and novel flavone gyrase inhibitors to DNA gyrase. Adv. Exp. Med. Biol., 390, 59-67 (1995).
  30. A. Wube, J.-D. Guzman, A. Hufner, C. Hochfellner, M. Blunder, R. Bauer, S. Gibbons, S. Bhakta, and F. Bucar, Synthesis and antibacterial evaluation of a new series of N-Alkyl-2-alkynyl/(E)-alkenyl-4-(1H)-quinolones, Molecules, 17, 8217-8240 (2012). https://doi.org/10.3390/molecules17078217
  31. S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, and S. Soetjipto, Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study, Preprints.org, 2020030226 (2020).
  32. J. C. Stockert, R. W. Horobin, L. L. Colombo, and A. BlazquezCastro, Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives, Acta Histochem., 120, 159-167 (2018). https://doi.org/10.1016/j.acthis.2018.02.005
  33. T. Flerlage, D. F. Boyd, V. Meliopoulos, P. G. Thomas, and S. Schultz-Cherry, Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract, Nat. Rev. Microbiol., 19, 425-441 (2021). https://doi.org/10.1038/s41579-021-00542-7
  34. C. Cermelli, A. Cuoghi, M. Scuri, C. Bettua, R. Neglia, A, Ardizzoni, E. Blasi, T. Iannitti, and B. Palmieri, In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid, Virol. J., 8, 141 (2011).