DOI QR코드

DOI QR Code

Dynamic analysis of wind-vehicle-bridge system considering additional moments of non-uniform winds by wind shielding effect of multi-limb tower

  • Xu Han (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Huoyue Xiang (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Xuli Chen (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Yongle Li (Department of Bridge Engineering, Southwest Jiaotong University)
  • Received : 2021.07.20
  • Accepted : 2022.12.22
  • Published : 2023.01.26

Abstract

To evaluate the wind shielding effect of bridge towers with multiple limbs on high-speed trains, a wind tunnel test was conducted to investigate the aerodynamic characteristics of vehicles traversing multi-limb towers, which represented a combination of the steady aerodynamic coefficient of the vehicle-bridge system and wind environment around the tower. Subsequently, the analysis model of wind-vehicle-bridge (WVB) system considering the additional moments caused by lift and drag forces under nonuniform wind was proposed, and the reliability and accuracy of the proposed model of WVB system were verified using another model. Finally, the factors influencing the wind shielding effect of multi-limb towers were analyzed. The results indicate that the wind speed distributions along the span exhibit two sudden changes, and the wind speed generally decreases with increasing wind direction angle. The pitching and yawing accelerations of vehicles under nonuniform wind loads significantly increase due to the additional pitching and yawing moments. The sudden change values of the lateral and yawing accelerations caused by the wind shielding effect of multi-limb tower are 0.43 m/s2 and 0.11 rad/s2 within 0.4 s, respectively. The results indicate that the wind shielding effect of a multi-limb tower is the controlling factor in WVB systems.

Keywords

Acknowledgement

This work was supported by the financial support from the National Natural Science Foundation of China (51978589, 51778544), and the Fundamental Research Funds for the Central Universities (2682021CG014).

References

  1. Argentini, T., Ozkan, E., Rocchi, D., Rosa, L. and Zasso, A. (2011), "Cross-wind effects on a vehicle crossing the wake of a bridge pylon", J. Wind Eng. Ind. Aerod., 99(6-7), 734-740. https://doi.org/10.1016/j.jweia.2011.01.021.
  2. Baker, C.J. (2010), "The simulation of unsteady aerodynamic cross wind forces on trains", J. Wind Eng. Ind. Aerod., 98(2), 88-99. https://doi.org/10.1016/j.jweia.2009.09.006.
  3. Bao, Y.L., Xiang, H.Y., Li, Y. L., Yu, C.J. and Wang, Y.C. (2019), "Study of wind-vehicle-bridge system of suspended monorail during the meeting of two trains", Adv. Struct. Eng., 22(8), 1988-1997. https://doi.org/10.1177/1369433219830255.
  4. Bao, Y., Zhai, W., Cai, C., Zhu, S. and Li, Y. (2021), "Dynamic interaction analysis of suspended monorail vehicle and bridge subject to crosswinds", Mech. Syst. Sig. Processing, 156, 107707. https://doi.org/10.1016/j.ymssp.2021.107707.
  5. Cao, Y.H., Xiang, H.F. and Zhou, Y. (2000), "Simulation of stochastic wind velocity field on long-span bridges", J. Eng. Mech.-ASCE, 126(1), 1-6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(1).
  6. Charuvisit, S., Kimura, K. and Fujino, Y. (2004), "Experimental and semi-analytical studies on the aerodynamic forces acting on a vehicle passing through the wake of a bridge tower in cross wind", J. Wind Eng. Ind. Aerod., 92(9), 749-780. https://doi.org/10.1016/j.jweia.2004.04.001.
  7. Cheli, F., Corradi, R. and Tomasini, G. (2012), "Crosswind action on rail vehicles: a methodology for the estimation of the characteristic wind curves", J. Wind Eng. Ind. Aerod., 104(SI), 248-255. https://doi.org/10.1016/j.jweia.2012.04.006.
  8. De, F.J., Cuong, P.T. and Faria, R. (2015), "Modeling of cement hydration in high performance concrete structures with hybrid finite elements", Int. J. Numer. Meth. Eng., 103(5), 364-390. https://doi.org/10.1002/nme.4895.
  9. Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", J. Eng. Mech.-ASCE, 122(8), 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778).
  10. Ge, G.H., Zhang, N. and Zhou, S. (2014), "Analysis on windvehicle-bridge dynamic interaction when trian pass through the tower region of long-span bridge", Scientia Sinica Technologica, 44(7), 793-800. https://doi.org/10.1360/N092014-00090.
  11. Han, X., Xiang, H., Li, Y. and Wang, Y. (2019), "Predictions of vertical train-bridge response using artificial neural networkbased surrogate model", Adv. Struct. Eng., 22(12), 2712-2723. https://doi.org/10.1177/1369433219849809.
  12. Han, Y., Li, K., He, X., Chen, S. and Xue, F. (2018), "Stress analysis of a long-span steel-truss suspension bridge under combined action of random traffic and wind loads", J. Aeros. Eng., 31(3), 04018021. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000843.
  13. He, W., Guo, X.R., Zhu, Z.H., Deng, P. and He, X.H. (2020), "Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge", Wind Struct., 31(1), 43-57. http://dx.doi.org/10.12989/was.2020.31.1.043.
  14. Li, Y., Hu, P., Cai, C.S., Zhang, M. and Qiang, S. (2013), "Wind tunnel study of a sudden change of train wind loads due to the wind shielding effects of bridge towers and passing trains", J. Eng. Mech., 139(9), 1249-1259. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000559.
  15. Li, Y., Qiang, S., Liao, H. and Xu, Y.L. (2005), "Dynamics of wind-rail vehicle-bridge systems", J. Wind Eng. Ind. Aerod., 93(6), 483-507. https://doi.org/10.1016/j.jweia.2005.04.001.
  16. Ma, L., Zhou, D., Han, W., Wu, J. and Liu, J. (2016), "Transient aerodynamic forces of a vehicle passing through a bridge tower's wake region in crosswind environment", Wind Struct., 22(2), 211-234. http://dx.doi.org/10.12989/was.2016.22.2.211.
  17. Olmos, J.M. and Astiz, M.A. (2018), "Improvement of the lateral dynamic response of a high pier viaduct under turbulent wind during the high-speed train travel", Eng. Struct., 165, 368-385. https://doi.org/10.1016/j.engstruct.2018.03.054.
  18. Qin, S.Q. and Gao, Z.Y. (2017), "Developments and prospects of long-span high-speed railway bridge technologies in China", Engineering, 3(6), 787-794. https://doi.org/10.1016/j.eng.2017.11.001.
  19. Qin, S., Xu, W., Lu, Q., Zheng, Q., Fu, Z., Yuan, R. and Sun, J. (2020), "Overall design and concept development for main navigational channel bridge of Changtai Changjiang River Bridge", Bridge Construct., 50(3), 1-10.
  20. Rocchi, D., Rosa, L., Sabbioni, E., Sbrosi, M. and Belloli, M. (2012), "A numerical-experimental methodology for simulating the aerodynamic forces acting on a moving vehicle passing through the wake of a bridge tower under cross wind", J. Wind Eng. Ind. Aerod., 104(SI), 256-265. https://doi.org/10.1016/j.jweia.2012.03.012.
  21. Salati, L., Schito, P., Rocchi, D. and Sabbioni, E. (2018), "Aerodynamic study on a heavy truck passing by a bridge pylon under crosswinds using CFD", J. Bridge Eng., 23(9), 04018065. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001277.
  22. Togbenou, K., Li, Y., Chen, N. and Liao, H. (2016), "An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum", J. Wind Eng. Ind. Aerod., 151, 48-59. https://doi.org/10.1016/j.jweia.2016.01.005.
  23. Wang, B., Xu, Y. L., Zhu, L. D. and Li, Y.L. (2014), "Crosswind effect studies on road vehicle passing by bridge tower using computational fluid dynamics", Eng. Appl. Comput. Fluid Mech., 8(3), 330-344. https://doi.org/10.1080/19942060.2014.11015519.
  24. Wang, L., Shen, R., Wang, C., Zhang, S. and Wang, Y. (2019), "Theoretical and experimental studies of the antislip capacity between cable and saddle equipped with horizontal friction plates", J. Bridge Eng., 24(4), 04019005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001360.
  25. Wang, Y., Xia, H., Guo, W., Zhang, N. and Wang, S. (2018), "Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind", Wind and Structures, 27(1), 29-40. https://doi.org/10.12989/was.2018.27.1.029.
  26. Wang, Z.W., Zhang, W.M., Tian, G.M. and Liu, Z. (2020), "Joint values determination of wind and temperature actions on long - span bridges: Copula-based analysis using long-term meteorological data", Eng. Struct., 219, 110866. https://doi.org/10.1016/j.engstruct.2020.110866.
  27. Wu, M.X., Li, Y.L. and Zhang, W. (2017), "Impacts of wind shielding effects of bridge tower on railway vehicle running performance", Wind Struct., 25(1), 63-77. http://dx.doi.org/10.12989/was.2017.25.1.063.
  28. Xiang, H., Li, Y., Chen, S. and Li, C. (2017), "A wind tunnel test method on aerodynamic characteristics of moving vehicles under crosswinds", J. Wind Eng. Ind. Aerod., 163, 15-23. https://doi.org/10.1016/j.jweia.2017.01.013.
  29. Xiang, H., Tang, P., Zhang, Y. and Li, Y. (2020), "Random dynamic analysis of vertical train-bridge systems under small probability by surrogate model and subset simulation with splitting", Railway Eng. Sci., 28(3), 305-315. https://doi.org/10.1007/s40534-020-00219-6.
  30. Yan, J., Chen, T., Deng, E., Yang, W., Cheng, S. and Zhang, B. (2021), "Aerodynamic response and running posture analysis when the train passes a crosswind region on a bridge", Appl. Sci.-Basel, 11(9), 4126. https://doi.org/10.3390/app11094126.
  31. Zhang, J., Zhang, M., Huang, B., Li, Y., Yu, J. and Jiang, F. (2021), "Wind tunnel test on local wind field around the bridge tower of a truss girder", Adv. Civil Eng., 2021, 8867668. https://doi.org/10.1155/2021/8867668.
  32. Zhang, N., Ge, G., Xia, H., & Li, X. (2015), "Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers", Wind Struct., 21(3), 311-329. http://dx.doi.org/10.12989/was.2015.21.3.311.
  33. Zhang, Q.W., Su, C.Q. and Wang, Y.P. (2020), "Numerical investigation on aerodynamic performance and stability of a sedan under wind-bridge-tunnel road condition", Alexandria Eng. J., 59(5), 3963-3980. https://doi.org/10.1016/j.aej.2020.07.004.
  34. Zhang, T., Xia, H. and Guo, W.W. (2018), "Analysis on running safety of train on the bridge considering sudden change of wind load caused by wind barriers", Front. Struct. Civil Eng., 12(4), 558-567. https://doi.org/10.1007/s11709-017-0455-1.
  35. Zhang, T., Xia, H. and Guo, W. (2016), "Study on influences of wind shielding effect of pylon of long span bridge on aerodynamic parameters of trains", Bridge Construct., 46(3), 63-68.