
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

187

Manuscript received December 5, 2023
Manuscript revised December 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.12.18

Software Metric for CBSE Model

Iyyappan. M1, Sultan Ahmad*2, Shoney Sebastian2, Jabeen Nazeer3, and A.E.M. Eljialy4

1Department of Information and Communication Technology, Adani University, Ahmedabad - 382421, Gujarat, India

2*Department of Computer Science, College of Computer Engineering and Sciences,
Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2Department of Computer Science, Christ (Deemed to be University), Bengaluru - 560029, Karnataka, India
3University Center for Research and Development (UCRD), Department of Computer Science and Engineering,

Chandigarh University, Gharuan, Mohali 140413, Punjab, India
4Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz

University, Al-Kharj, 11942, Saudi Arabia
*Corresponding Author: Sultan Ahmad (s.alisher@psau.edu.sa)

Summary
Large software systems are being produced with a noticeably
higher level of quality with component-based software
engineering (CBSE), which places a strong emphasis on breaking
down engineered systems into logical or functional components
with clearly defined interfaces for inter-component
communication. The component-based software engineering is
applicable for the commercial products of open-source software.
Software metrics play a major role in application development
which improves the quantitative measurement of analyzing,
scheduling, and reiterating the software module. This
methodology will provide an improved result in the process, of
better quality and higher usage of software development. The
major concern is about the software complexity which is focused
on the development and deployment of software. Software
metrics will provide an accurate result of software quality, risk,
reliability, functionality, and reusability of the component. The
proposed metrics are used to assess many aspects of the process,
including efficiency, reusability, product interaction, and process
complexity. The details description of the various software
quality metrics that may be found in the literature on software
engineering. In this study, it is explored the advantages and
disadvantages of the various software metrics. The topic of
component-based software engineering is discussed in this paper
along with metrics for software quality, object-oriented metrics,
and improved performance.
Keywords:
Complexity metrics; object-oriented metrics; size metrics;
software metrics; software quality; software metrics;
Component Based Software Engineering(CBSE).

1. INTRODUCTION

A method known as CBSE is used to expand the
planning process and incorporate more components into
computer-based systems [1]. It offers a method for
building massive software systems. The development
phase primarily uses internal and commercially available

components. The software systems of today are
exceedingly complicated, voluminous, and unwieldy. As a
result, there is decreased productivity, increased risk
management, and poor software quality. Software metrics,
which track numerous complexity facets, are crucial for
evaluating and enhancing software quality [2]. Metrics
offer important information for external quality elements
including reliability, reusability, and maintainability [3].
Metrics assist in giving the system data and improving the
system's quality. Software metrics will reduce the
subjectivity of faults during the assessment of Software
quality[20]. Metrics are the numerical value of software
and it is used to predict the fault [21][27]. When it comes
to business systems that need to retrieve a lot of data, it is
really helpful. The software's quality is contained in the
object-oriented design. The management of both large-
and small-scale projects was handled via system objects
associated to specific attributes or qualities [4]. The
classification of an object's design includes its reusability,
dependability, decomposition, and adaptability [5].
Metrics are described as "a quantifiable measure of the
extent to which a component, system, or a given attribute"
[6] in accordance with IEEE standards. The qualities of
quality metrics include: [7] correctness, dependability,
formality, implementability, minimal value, and
orthogonality. System requires better quality, greater
performance, and safety. The usage of software metrics
could be used to accomplish this. By examining the
elements on a component-based system, these metrics are
primarily used to manage risk and improve quality. The
measurements are used in software development and
deployment methods. The primary metrics process in the
CBSE identifies the likely risks and necessary corrective
measures. Component-based metrics' primary purposes are
to provide reusability, cut costs, and speed up development.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

188

2. BACKGROUND STUDY

Many works related to CBSE quality metrics
have been published. The related papers that are relevant
to our paper are discussed as follows selectively.

Zhiqiao Wu.et.al Proposed the methodology for
reduce the cost and increase the reliability of reuse models
[8]. Iyyappan.et.al discussed about the coupling and
cohesion metrics component and procedure followed for
these metrics [9]. Miguel Goulao.et al. [10] provided a
method for metric formalisation based on the usage of
formal specification languages and ontologies.

Jianguo Chen .et al. [11] suggested a formal
direct and indirect component coupling metric for both
individual component and assembly components. P.K.
Suri .et al. [12] provided measures for assessing the
component's independence for reusability. For evaluation,
the chi-square test has been used.

V.Lakshmi Narasimhanet .et.al. [13] detailed a
methodical comparison of three sets of data, allowing the
user to select the one that is most appropriate for their
needs. P.Edith Linda .et al. [14] performed comparisons
between different algorithms based on how well they
perform and how much memory they use.

Abhikriti Narwal .et.al. [15] outlined the
complexity metric for software parts based on interface
techniques. Sidhu Pravneet .et.al. [16] proposed a method
for measuring a software component's quality objectively
using values and ratios. To determine the precise quality of
the component in the metrics, a back propagation approach
based on artificial intelligence is frequently utilised.

Hesham Abandahet .et. al. [17] presented the
effectiveness and power of call graph based metrics by
evaluating the many categories of bugs. Taranjeet
Kauret .et.al. [18] made comparison of various lack of
cohesion metrics to increase the fault prediction power and
to decrease the complexity.

Divya Chaudharyet .et. al. [19] defined various
management metrics, requirement metrics, and complexity
metrics focusing on various attributes such as cost, quality
and productivity. Ermiyas Birihanu Belachew et al[20] has
identified Software quality(Correctness, Product quality,
Scalibiity, Completeness and absence of bugs) is a means
of meansuring how software is designed and how well the
software confirms the design.

Ming-Chang Lee[25] has defined a few software
metrics in the design factors and addressed a number of
software quality assurance models as well as the use of
some quality factors measurement methods in the quality
life cycle. There are one or more QA measure metrics for
each activity in the software life cycle that are focused on
guaranteeing the quality of the process and finished
product[26].

3. METRICS TAXONOMY

The taxonomy includes a set of qualitative behavior and
quantitative evaluations, for the scale of the project depend
on the Line of code (LOC) [28][29]. The quantitative
evaluation enforces the desired comparability of proposals.
The taxonomy’s characteristics are as follows:

 Scope - This refers to the level of granularity and
type of artifacts that are the objectives of the
metrics- based on the evaluations. Some
components are evaluated in white box and rest in
the black box. So coarse and fine-grained
component are totally differentiated with one
another characteristics.

 Intent -Various approach and their functionality

used to achieve those objectives in the domain.

 Technique - It’s used for the explanation and
verification of the metrics process. It follows the
formal metrics definition on this technique.

 Critique - A qualitative assessment of the most
important features of the proposal, including its
most motivating aspects, as well as its main
limitations also provided.

 Maturity – It follow the comparison framework
on the basis characteristic. It follows four
different viewpoints: quality replica, mapping
among metrics and quality model, description
about metrics procedure [2]. how users and
providers’ security authentication is performed).

Fig 1: Software Components Classification

.

Software Component

Complexity

Reusability

Cohesion and Coupling

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

189

Fig 2: Metrics for Component, Objects and Quality

4. COMPONENT METRICS

Component level metrics are used for the measurement
of qualities in the terms of their complexity,
customizability, and reusability.

A. Component Complexity Metric:

Component complexity metrics can be segregated into
four different methods a Plain, Static, Dynamic and
Cyclomatic. The plain metric contains the various
elements such as classes, abstract classes, and interface.
The static metric determines the weighted sum of various
types of relationships in a component. Complexity of
message passing through also present in internal
component is called dynamic. The Cyclomatic metric
present after the implementation in the design stage.

B. Component Customization Metric:

On the interface level it follows the various methods.
This metric component will extent of methods for
customization in the interface.

C. Component Reusability Metric

 In the development process we can measure how
much reusable component are used in the design phase. It
can be calculated using the ratio of the interface
component between sums of the interface component. The

metrics also provide the adaptability, compose-ability and
flexibility of software.

D. JAVA Components using metrics

It’s used to measure the black box component. The five
metrics for measuring the reusability of a software
component: existence of meta-information, component
observability, customizability of component, and external
dependency.

 Available Primary Data - It is a binary metric

value also collect the information from the
existing Meta-data. It enhances the
understandability of a component.

 Component Observability – It analyses the

number of fields available on the class
implementation on the java component. The
rate component observability contains
readable properties, if class without fields it
follows value should be zero. It’s easy to
understand the component from the external
viewpoint.

 Component Customizability - This method

contains the writable properties to the java
component to check their number of fields.

Metrics for Software

Metrics for Software
Quality

Metrics for Software
Objects

Metrics for
Component -

CCRCM

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

190

 Components without Return - It has been
observed the percentage of business methods
without any return value from all business
methods implemented within a component.
High value of the metric indicates a low level
of external dependency of the component
which results in ease of portability.

 Component parameter - It is the percentage of

business methods without any parameters
from all business methods. External
dependency of a component are used measure
in the Self-completeness of parameter. The
metrics are combined by the concept of a
reusability model which consider that
reusability also focuses on understand ability,
interoperability, adaptability.

E. Component Cohesion and Coupling
Metrics

This metrics mention about the component of high
cohesion and low coupling. The cohesion metric takes in
to the consideration of structural relationships is called as
the classes of an object oriented component. Coupling
between the classes Cm, Cn, it also mentions about the
weighted sum of different types of method and modules of
classes. It considers sum of coupling among all pairs of
classes.

F. Contextual Reusability Metric

Adding the internal attributes to the component
reusability process. Observance metric methods are used
in this process: Architecture and Componentry consumer
are provided by the cloud service provider.

5. SOFTWARE QUALITY METRICS

 These are some of the software quality metrics that are
used in the software development process:

A. Size related metrics

It used to measure size of the software. Either it should be
small scale or large scale project.

Line of code (LOC): This metrics method mainly used to
evaluate the module size in the software quality. It is
related to the source code evaluations [4].

Function point metrics: Function point metrics is the type
of metrics which is used to evaluate the line of code only
when the accessibility of code is present and so that it
cannot be used in early stage. There is a method to resolve
the evaluation of software size early in the enlargement of
life cycle which was proposed by Albrecht. This mainly
depends on inquiries, input of the user, output of the user
and the values expected to measure the value in evaluating

the size of the program and thus intention which is needed
for the development.

B. Halstead metrics:

It was proposed by Halstead fort the purpose software
quality assessment. Halstead's measure of module
conciseness is calculated using the basic premise that a
well-structured program is merely a function of its specific
operators and operands. In this method to totally find the
software production effort which consists of some length
(N), volume (V) and vocabulary (n).

These software Characterization formulas were developed
by Halstead[22] .

The measure of vocabulary: n = n1 + n2

Program length: N = N1 +N2

Program volume: V =Nlog n

Program level: L= V* / V

Where

n1 = the number of unique operators

n2 = the number of unique operand

N1= the total number of operators

N2 = the total number of operands

C. McCabe’s Cyclomatic complexity metrics:

McCabe [23] has proposed a complexity metric on
mathematical graph theory.

The maximum number of "linearly independent" paths
through a program serves as a proxy for the complexity of
that program as determined by its control structure. This
measurement can be used by software developers to
identify whether program modules are excessively complex
and require re-coding. The detail can be seen in Table. I.

TABLE 1 THE FORMULAS OF MCCABE’S CYCLOMATIC COMPLEXITY

METRICS [25]

Software
Metrics

Software
quality factors

Formulas

Cyclomatic
complexity

V(G)

Complexity

Maintainability

Number of bugs

Modularity

Simplicity

Reliability

Testability

Understandability

V(G)=e-n+2p

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

191

Essential
complexity

EV(G)

Complexity

Conciseness

Efficiency

Simplicity

EV(G)=V(G)-m

D. Henry and Kafura’s Information Metrics

Information flow complexity (IFC) [24] describes the
amount of information which flows into and out of a
procedure. This metrics use the flow between procedures to
dhow the data flow complexity of a program. The Formula
is:

IFC = Length´ (fan - in * fan - out)2

Where

Fan-in: The number of local flows into a procedure plus
the number of global data structures from which a
procedure retrieves information.

Fan-out: The number of local flows into a procedure
plus the number of global data structures from which a
procedure updates.

Length: It is the number of lines of source code in the
procedure. In implementing this count, embedded
comments are also counted, but not comments
preceding the beginning of the executable code.

E. Quality metrics

In this quality metrics can be identified with the help of
fault or failure metrics. The code inspections and the
program test number are used to identify the error in this
metrics.

6. OBJECT ORIENTED SOFTWARE METRICS

A. Metrics for object-oriented software engineering
(MOOSE)

Similar metrics which inaugurated expressive amount
of interest. Presently it suite for the evaluation of object-
oriented software proposed by Chidamber and Kemerer
(CK).

B. Depth of inheritance tree (DIT)

Here a tree exists with root node and leaf nodes. This
metric used to measure the longest path from the tree. The
class behaviour and the design complexity of potential
reuse and class. Inheritance layers are very difficult to
understand. Thus the tree with deeper hierarchy defines the
reuse of inherited methods.

(a). Number of children (NOC): It’s in the form of class
hierarchy also hold the sub class and super class. The

number of subclass increase the comparison of number of
super class.

(b). Response for class (RFC): It defines the response set
also evaluates set of methods are available in this metrics.
Two different methods are followed executed in response
and messages receive from the object. The value which is
large also complicates debugging of the object and even
testing where it needs the particular tester to be have the
functionality knowledge. If the RFC value is very large it
will be taking complex class which is a worst case
scenario, and the RFC value will be helped in assuming
the time required for the assessment testing.

C. Metrics for object-oriented design (MOOD)

It holds the functionality of inheritance, message
passing, polymorphism and encapsulation. Each of the
object oriented design metrics were expressed to measure.
The actual use any feature of a particular design is defined
by the numerator. Attributes and methods are the two main
features of the MOOD metrics. The object in the system is
like an attributes also methods are used to modify or
maintain the objects [9]. Metrics of object-oriented design
are defined as follows:

(a). Attribute hiding: The ratio of sum of all attributes are
invisible in all classes. Along with entire classes and
attribute are under this factor consideration.

(b). Method inheritance: Inheritance of class methods is
to calculate the ratio of total number of the object are
inherited [2].

(c). Attribute method: This method of inheritance factors
are described about the total sum of attributes inherited in
the classes, also number of attributes available on the
system [9].

(d). Polymorphism factor (PF): It defines the number of
available different polymorphic situation. In the method of
attribute inheritance and method inheritance are used to
evaluate the class inheritance and to give the property of
similarity in to the classes.

D. Quality model for object-oriented design (QMOOD)

This type of the quality model which is comprehensive
and inaugurates a precisely defined and imperiously a
validated model. To determine the quality attributes of
design such as reusable method and understandable
method. Some mathematical formulas with structural
Object oriented design characteristics like coupling
technique and encapsulation method. The quality model
contains of six equations which originate a relationship
between the six quality attributes of the object-oriented

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

192

design and the properties are: Functionality, effectiveness,
extendibility, reusability, understand ability, flexibility and
eleven design type characteristics.

7. CONCLUSION

With the rapid development in software industry, the
measurement of the software product becomes more
complex thus increasing the necessity of better software
metrics are required on the time. CBSE is the widely used
concept in the software industry development and
innovative research phase. Metrics are used for separating
the characteristics of the component. Metrics mainly focus
on selecting the suitable reusable components and analyses
the functions which can perform properly. Metrics
provided the data to the system and increasing the quality
of system. Metrics are mainly used for managing risk in
the system. In this research work, we can understand how
various metrics are used in CB development also that
concentrate on the factors like complexity, size, reliability,
reusability, understandability, maintainability etc. A
systematic solution and environment helps the automatic
system level measurement.
The following are key points that are concluded

 Component characterization follow those steps:
increase understanding of architecture, improve
the usage of component, better retrieval,
performance cataloguing used for reusability.

 Mostly metrics suggested for CBSE has been
defined on the basis of theoretical considerations.
However, the practical paradigm should be
considered and theory must be validated.

ACKNOWLEDGMENTS

The authors would like to thank the Deanship of Scientific
Research at Prince Sattam Bin Abdulaziz University,
Alkharj, Saudi Arabia for the assistance.

References

[1] R. S. Pressman, “Software Engineering, A Practitioner’s Approach”,
Sixth Edition, Mc Graw. Hill, 2005.

[2] Divya Chaudhary, Prof. Rajender Singh Chillar, “Component Base
Software Engineering Systems: Process and Metrics”, International
Journal of Advanced Research in Computer Science and Software
Engineering, July 2013, Vol. 3, Issue 7, pp. 91-95.

[3] Gurdev Singh, Dilbag Singh, Vikram Singh, “A Study of Software
Metrics”, International Journal of Computational Engineering &
Management, Jan 2011, Vol. 11, pp. 22-27.

[4] C. Neelamegam, M. Punithavali, “A survey on object oriented
quality metrics”, Global journal of computer science and
technologies, pp. 183-186, 2011.

[5] B. Henderson, seller, “object oriented metrics: measure of
complexity”, Prentice Hall, 1996.

[6] R.S.Pressman, ”Software Engineering-A practitioner’s Approach”
Eight Edition, Mc. Graw Hill International Edition 2014.

[7] J. Bansiya, C. G. Davis, “A Hierarchical Model for Object-Oriented
Design Quality Assessment”, IEEE Transactions on Software
Engineering, 4-17,2002

[8] Z. Wu, J. Tang, Jiafu and C.K. Kwong, and C.Y. Chan, “A model
and its algorithm for software reuse optimization problem with
simultaneous reliability and cost consideration”, International
Journal of Innovative Computing, Information and Control, Volume
7, Issue 5, 2011.

[9] M. Iyyappan, A. Kumar, S. Ahmad, S. Jha, B. Alouffi et al., "A
component selection framework of cohesion and coupling metrics,"
Computer Systems Science and Engineering, vol. 44, no.1, pp. 351–
365, 2023.

[10] Miguel Goulao, Fernando Brito e Abreu, “Composition Assessment
Metrics for CBSE”, Proceeding EUROMICRO '05 Proceedings of
the 31st EUROMICRO Conference on Software Engineering and
Advanced Applications, 2005, pp-96- 105.

[11] Jianguo Chen, Wai K. YEAP, Stefan D. Bruda”A Review of
Component Coupling Metrics for Component based Development” ,
Proceeding WCSE '09 Proceedings of the 2009 WRI World
Congress on Software Engineering - Volume 04, pp. 65-69.

[12] P.K.Suri, NeerajGarg, “Software Reuse Metrics: Measuring
Component Independence and its applicability in Software Reuse”
International Journal of Computer Science and Network Security,
Vol. 9, No.5, May 2009, pp. 237- 248.

[13] V. Lakshmi Narasimhan, P.T. Parthasarathy and M.Das,
“Evaluation of a Suite of Metrics for Component Base Software
Engineering”, Issues in Information Science and Information
Technology, 2009, Vol. 6, 2009, pp. 732-740.

[14] P. Edith Linda, V.ManjuBashini, S.Gomathi, “Metrics for
Component-Based Measurement Tools”, International Journal of
Scientific and Engineering Research, May 2011, Vol. 2, Issue 5, pp.
1-6.

[15] AbhikritiNarwal, “Empirical Evaluation of Metrics for Component-
Based Software Systems”, International Journal of Latest Research
in Science and Technology, Dec 2012, Vol 1, Issue 4, pp. 373-378.

[16] SidhuPravneet, “Quality metrics Implementation in Component
based Software Engineering using AI Back Propagation Algorithm
Software Component”, International Journal of Engineering and
Management Sciences, 2012, Vol. 3(2), pp. 109-114.

[17] HeshamAbandah and IzzatAlsmadi, “Call Graph based Metrics to
Evaluate Software Design Quality”, International Journal of
Software Engineering and its Applications, Jan 2013 Vol.7, No.1,
pp.1-12.

[18] TaranjeetKaur, RupinderKaur, “Comparison of various Lacks of
Cohesion Metrics”, International Journal of Engineering and
Advanced Technology, Feb 2013, Vol. 2, Issue 3, pp. 252-254.

[19] DivyaChaudhary, Prof. Rajender Singh Chillar, “Component Base
Software Engineering Systems: Process and Metrics”, International
Journal of Advanced Research in Computer Science and Software
Engineering, July 2013, Vol. 3, Issue 7, pp. 91-95.

[20] Ermiyas Birihanu Belachew, Feidu Akmel Gobena and Shumet
Tadese Nigatu, “ Analysis Of Software Quality Using Software
Metrics”. International Journal on Computational Science &
Application (IJCSA) Vol 8, No. 4/5, October 2018.

[21] Pooja P and D.A. Phalke, “Survey On Software Defect Prediction
Using Machine Learning Techniques”. International Journal of
Science and Research, Vol 3, December 2014

[22] Halstead, MH. Elements of software Science, New York, North-
Holland; 1978.

[23] McCable TJ. A complexity measure, IEEE Transaction on
Software Engineering, 1976; SE-2(4):308-320.

[24] Henry S, Kafura D. The evaluation of software systems’ structure
using qualitative software metrics, Software- practice and
Experience. 1984;14(6):561-573.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

193

[25] Ming-Chang Lee “Software Quality Factors and Software Quality
Metrics to Enhance Software Quality Assurance “ British Journal of
Applied Science & Technology 4(21): June 2014

[26] Rahman HU, Raza M, Afsar P, Alharbi A, Ahmad S, Alyami H.
Multi-criteria decision making model for application maintenance
offshoring using analytic hierarchy process. Applied Sciences. 2021
Sep 14;11(18):8550.

[27] Muqeem M, Sultan A, Nazeer J, Farooqui MF, Alam A. Selection
of Requirement Elicitation Techniques: A Neural Network based
Approach. International Journal of Advanced Computer Science
and Applications. 2022;13(1)

[28] Iyyappan M, Ahmad S, Jha S, Alam A, Yaseen M, Abdeljaber HA.
A Novel AI-Based Stock Market Prediction Using Machine
Learning Algorithm. Scientific Programming. 2022 Apr 1;2022.

[29] Ahmad S, Hasan M, Shahabuddin M, Tabassum T, Allvi MW. IoT
based pill reminder and monitoring system. International Journal of
Computer Science and Network Security. 2020 Jul;20(7):152-8.

