DOI QR코드

DOI QR Code

Historical Development of Research and Publications in Atmospheric Physics Field

대기물리 분야 연구논문 발전 현황

  • Seong Soo Yum (Department of Atmospheric Sciences, Yonsei University) ;
  • Kyu-Tae Lee (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Jong-Jin Baik (School of Earth and Environmental Sciences, Seoul National University) ;
  • Gyuwon Lee (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Sang-Woo Kim (School of Earth and Environmental Sciences, Seoul National University) ;
  • Junshik Um (Department of Atmospheric Sciences, Pusan National University)
  • 염성수 (연세대학교 대기과학과) ;
  • 이규태 (강릉원주대학교 대기환경과학과) ;
  • 백종진 (서울대학교 지구환경과학부) ;
  • 이규원 (경북대학교 대기과학과) ;
  • 김상우 (서울대학교 지구환경과학부) ;
  • 엄준식 (부산대학교 대기환경과학과)
  • Received : 2022.10.11
  • Accepted : 2022.12.11
  • Published : 2023.03.31

Abstract

Research papers published in the Korean Meteorological Society (KMS) journals by the members of KMS since the establishment of KMS in 1963 in the field of atmospheric physics are summarized. A significant number of research papers published in other international journals are also cited in this paper to highlight the achievement of the KMS members in international academic community. The aim is to illustrate the historical development of research activities of the KMS members in the field of atmospheric physics, and indeed it is found that the KMS members have made enormous progress in research publications quantitatively and qualitatively in the field of atmospheric physics. In detail, however, observational studies of aerosol physical properties and cloud and precipitation physics were very active, and studies on cloud physics parameterization for cloud modeling were highly recognized in the world, but observational and theoretical studies of atmospheric radiation were relatively lacking and solicit more contribution from the KMS members.

본 문헌 검토 논문에서는 대기물리 분야를 편의상 대기복사, 대기 에어로졸, 구름물리 관측 및 실험, 구름모델링, 강수물리로 나누어 각 분야에서 196 3년 한국기상학회가 발족된 이후 지난 60년간 역사적으로 어떠한 학술적인 발전을 이루어왔는지를 검토하였다. 대기복사 분야에서는 주로 복사관측과 복사이론 연구에 꾸준한 발전을 이루어왔으나 상대적으로 학회 회원들의 활동이 저조했다고 할 수 있다. 대기 에어로졸과 구름물리 분야는 기후변화 인자로서의 에어로졸의 역할과 그 중요성이 부각되면서 많은 연구가 이루어졌다. 다양한 첨단 에어로졸 관측장비를 이용한 관측, 기상관측 전용항공기의 도입과 이를 이용한 에어로졸 연직분포 관측, 구름 속의 구름입자 직접 관측 등이 가능해졌고, 여러 국제 공동 에어로졸/구름 관측 캠페인에 주도적으로 참여하여 의미 있는 연구결과를 발표하고 있으며, 구름모델링 분야에서는 구름과정 모수화 연구에 학회 회원들의 기여가 두드러졌다. 또한 지상 원격탐사 장비를 이용한 강수입자 특성과 강수 물리 과정에 대한 연구도 매우 활발히 이루어졌다. 2022년 초에는 국립기상과학원이 구름챔버 제작을 완성하여 현재 세계적으로도 드물게 이루어지고 있는 구름챔버를 이용한 구름물리, 인공강수 연구를 시작 할 수 있게 되었다. 이러한 선도적 활동을 발판으로 향후에는 한국기상학회 회원들이 대기물리 분야에서 세계 기상학계를 이끌어 가는 커다란 발전을 이룰 것으로 전망해 본다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No. NRF-2021R1A2B5B02002458, No. NRF-2020R1A2C1013278, No. NRF-2017R1D1A1B06032548, No. NRF-2021R1A4A1032646)임.

References

  1. Ahmed, T., H.-G. Jin, and J.-J. Baik, 2020: A physically based raindrop-cloud droplet accretion parametrization for use in bulk microphysics schemes. Quart. J. Roy. Meteor. Soc., 146, 3368-3383, doi: 10.1002/qj.3850.
  2. Bae, M.-S., and Coauthors, 2019: Chemical characteristics of size-resolved aerosols in coastal areas during KORUS-AQ campaign; comparison of ion neutralization model. Asia-Pac. J. Atmos. Sci., 55, 387-399, doi: 10.1007/s13143-018-00099-1.
  3. Bae, S. Y., S.-Y. Hong, and W.-K. Tao, 2019: Development of a single-moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) model. Asia- Pac. J. Atmos. Sci., 55, 233-245, doi: 10.1007/s13143-018-0066-3.
  4. Bang, W.-B., G. Lee, A. Ryzhkov, T. Schuur, and K.-S. S. Lim, 2020: Comparison of microphysical characteristics between the Southern Korean Peninsula and Oklahoma using two-dimensional video disdrometer data. J. Hydrometeor., 21, 2675-2690, doi: 10.1175/JHM-D-20-0087.1.
  5. Cha, J.-W., S. S. Yum, K.-H. Chang, and S.-N. Oh, 2007: Estimation of the melting layer from a micro rain radar (MRR) data at the Cloud Physics Observation System (CPOS) site at Daegwallyeong weather station. J. Korean Meteor. Soc., 43, 77-85.
  6. Cha, J.-W., K.-H. Chang, S. S. Yum, Y.-J. Choi, J.-Y. Jeong, J.-W. Jung, H.-Y. Yang, J.-Y. Bae, and S.-Y. Kang, 2010: Analysis of observational cases measured by MRR and PARSIVEL disdrometer for understanding the physical characteristics of precipitation. Atmosphere, 20, 37-47.
  7. Cha, J.-W., and Coauthors, 2019: Analysis of results and techniques about precipitation enhancement by aircraft seeding in Korea. Atmosphere, 29, 531-540, doi: 10.14191/Atmos.2019.29.4.481.
  8. Cha, J.-W., and S. S. Yum, 2021: Characteristics of precipitation particles measured by PARSIVEL disdrometer at a mountain and a coastal site in Korea. Asia-Pac. J. Atmos. Sci., 57, 261-276, doi: 10.1007/s13143-020-00190-6.
  9. Chae, S., K.-H. Chang, S.-K. Seo, J.-Y. Jeong, B.-J. Kim, C.-K. Kim, S. S. Yum, and J. Kim, 2018: Numerical simulations of airborne glaciogenic cloud seeding using the WRF model with the modified Morrison scheme over the Pyeongchang region in the winter of 2016. Adv. Meteor., 2018, Article ID8453460, doi: 10.1155/2018./8453460.
  10. Chang, K.-H., and Coauthors, 2007: Cloud physics observation system (CPOS) and validation of its products. Atmosphere, 17, 101-108.
  11. Cho, C., and Coauthors, 2019: Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmos. Environ., 212, 65-74, doi: 10.1016/j.atmosenv.2019.05.024.
  12. Cho, C., and Coauthors, 2021: Light-absorption enhancement of black carbon in the Asian outflow inferred from airborne SP2 and in-situ measurements during KORUS-AQ. Sci. Total Environ., 773, 145531, doi: 10.1016/j.scitotenv.2021.145531.
  13. Cho, H. K., 1968: Radiation balance over Korea. J. Korean Meteor. Soc., 4, 8-12 (in Korean only).
  14. Cho, H. K., 1975: A Study on the solar radiation in Korea by the rate of sunshine. J. Yonsei Soc., 12 (in Korean only).
  15. Cho, H. K., 1981: The variation of atmospheric turbidity in Seoul. J. Korean Meteor. Soc., 17, 1-21.
  16. Cho, H. K., T. Y. Lee, K. T. Lee, and B. Y. Lee, 1988: A model for the direct solar spectral irradiance at the earth's surface on dear days. J. Korean Meteor. Soc, 24, 58-71 (in Korean with English abstract).
  17. Cho, H. K., S. M. Lee, and C. Y. Choi, 1989: The Seasonal variations of total amounts of ozone at Seoul. J. Korean Meteor. Soc., 24, 272-280 (in Korean with English abstract). https://doi.org/10.4055/jkoa.1989.24.2.589
  18. Cho, H. K., T. Y. Lee, K. T. Lee, S. R. Chung, and M. J. Jeong, 1998: Optical properties of water cloud in the visible and infrared radiation. J. Korean Meteor. Soc., 34, 282-292 (in Korean with English abstract).
  19. Cho, H. K., B. Y. Lee, J. S. Lee, and S. W. Park, 2001: A seasonal climatology of erythemal ultraviolet irradiance over Korea. J. Korean Meteor. Soc., 27, 525-539 (in Korean with English abstract).
  20. Cho, K.-H., D.-I. Lee, and I.-H. Yoon, 2000: Comparisons of physical characteristics of snow particles at inland and coastal areas. J. Korean Meteor. Soc., 36, 477-486.
  21. Choi, K. O., S. S. Yum, D. Y. Chang, J. M. Yeom, and S. S. Lee, 2020: A study of the effect of regenerated CCN on marine stratocumulus cloud development using the WRF-LES model with spectral bin microphysics scheme. Atmos. Res., 246, doi: 10.1016/j.atomsres.2020.105100.
  22. Choi, T. J., B. Y. Lee, S. J. Kim, Y. M. Park, and Y. J. Yoon, 2006: The characteristics of Radiation, Temperature and Wind Direction around King Sejong Station, Antarctica. Korean Geophys. Soc., 9, 397-408 (in Korean with English abstract).
  23. Chou, M.-D., and K. T. Lee, 1996. Parameterization for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci., 53, 1203-1208, doi: 10.1175/1520-0469(1996)053<1203:PFTAOS>2.0.CO;2.
  24. Chou, M.-D., M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K. T. Lee, 1998. Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11, 201-214. https://doi.org/10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2
  25. Chou, M.-D., K. T. Lee, S. C. Tsay, and Q. Fu, 1999. Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159-169, doi: 10.1175/1520-0442(1999)012<0159:PFCLSF>2.0.CO;2.
  26. Chou, M.-D., K. T. Lee, and P. Yang, 2002. Parameterization of shortwave cloud optical properties for a mixture of ice particle habits for use in atmospheric models. J. Geophys. Res., 107, 1-9. https://doi.org/10.1029/2002JD002061
  27. Chou, M.-D., C. C. Yu, W. L. Lee, C. J. Shiu, K. T. Lee, I. S. Zo., J. B. Jee, and B. Y. Kim, 2020. A new k -distribution scheme for clear-sky radiative transfer calculations in the Earth atmosphere: 1. Thermal infrared (longwave) radiation. J. Atmos. Sci., 77, 2237-2256, doi: 10.1175/JAS-D-19-0088.1.
  28. Chou, M.-D., K. T. Lee, I. S. Zo., W. L. Lee, C. J. Shiu, and J. B. Jee, 2021. A New k-Distribution Scheme for Clear-Sky Radiative Transfer Calculations in Earth's Atmosphere. Part II: Solar (Shortwave) Heating due to H2O and CO2. J. Atmos. Sci., 78, 2657-2675, doi: 10.1175/JAS-D-20-0278.1.
  29. Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520-533, doi: 10.1175/WAF-D-10-05038.1.
  30. Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi: 10.1175/MWR-D-15-0255.1.
  31. Han, J.-Y., S.-Y. Hong, and Y. C. Kwon, 2020: The performance of a revised simplified Arakawa-Schubert (SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model (KIM). Wea. Forecasting, 35, 1113-1128, doi: 10.1175/WAF-D-19-0219.1.
  32. Heo, B.-H., and K.-E. Kim, 2001: A comparison of terminal velocity-drop size relationships to estimate drop size distribution from Doppler radar spectra. J. Korean Meteor. Soc., 37, 143-168.
  33. Hong, G. M., and B. C. Choi, 2006, Characteristics of Erythemal Ultraviolet Irradiance operating at Korea Meteorological Administration, J. Korean Soc. Atmos. Environ., 22, 223-233 (in Korean with English abstract).
  34. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF-single moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
  35. Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos. Sci., 54, 267-292, doi: 10.1007/s13143-018-0028-9.
  36. Hudson, J. G., and S. S. Yum, 2002: Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. J. Geophys. Res., 107, 8022, doi:10.1029/2001JD000829.
  37. Jang, M., D.-I. Lee, and C.-H. You, 2004: Z-R relationship and DSD analysis using a POSS disdrometer Part 1: Precipitation cases in Busan, 2001. Korean J. Atmos. Sci., 40, 557-570.
  38. Jee, J. B., W. H. Lee, I. S. Zo, and K. T. Lee, 2011, Correction of one-layer solar radiation model by multi-layer line-by-line solar radiation model. J. Korean Meteor. Soc., 21, 151-162, doi: 10.14191/Atmos.2011.21.2.151 (in Korean with English abstract).
  39. Jee, J. B., W. H. Lee, B. Y. Kim, K. T. Lee, M. S. Yoo, Y. J. Lee, and J. P. Jang, 2019, Calibration of pyranometer with solar radiation intercomparison observation at Research Institute for Radiation-Satellite, GangneungWonju National University. J. Korean Earth Sci. Soc., 40, 135-148, doi:10.5467/JKESS.2018.40.2.135.
  40. Jin, H.-G., H. Lee, and J.-J. Baik, 2019: A new parameterization of the accretion of cloud water by graupel and its evaluation through cloud and precipitation simulations. J. Atmos. Sci., 76, 381-400, doi: 10.1175/JASD-18-0245.1.
  41. Jin, H.-G., and J.-J. Baik, 2020: A new parameterization of the accretion of cloud water by snow and its evaluation through simulations of mesoscale convective systems. J. Atmos. Sci., 77, 2885-2903, doi: 10.1175/JAS-D-19-0326.1.
  42. Jin, H.-G., J.-J. Baik, H. Lee, and T. Ahmed, 2022: A new warm-cloud collection and breakup parameterization scheme for weather and climate models. Atmos. Res., 272, 106145, doi: 10.1016/j.atmosres.2022.106145.
  43. Joung, C. H., 1968: Some experiments on freezing of raindrop size water-drops. J. Korean. Meteor. Soc., 4, 19-22.
  44. Jwa, M., H.-G. Jin, J. Lee, S. Moon, and J.-J. Baik, 2021: Characteristics of raindrop size distribution in Seoul, South Korea according to rain and weather types. Asia-Pac. J. Atmos. Sci., 57, 605-617, doi: 10.1007/s13143-020-00190-6.
  45. Kim, B.-G. Kim, M.-G., T.-Y. Kwon, G.-M. Park, Y.-D. Han, S.-B. Kim, and K.-H. Chang, 2015: Observation and understanding of snowfall characteristics in the Yeongdong region. Atmosphere, 31, 461-472, doi:10.14191/Atmos.2021.31.4.461.
  46. Kim, C.-K., S. S. Yum, S.-N. Oh, J.-C. Nam, and K.-H. Chang, 2005: A feasibility study of winter orographic cloud seeding experiments in the Korean Peninsula. J. Korean Meteor. Soc., 41, 997-1014.
  47. Kim, C.-K., and S. S. Yum, 2010: Local meteorological and synoptic characteristics of the fogs formed over Incheon International Airport in the west coast of Korea. Adv. Atmos. Sci., 27, 761-776, doi: 10.1007/s00376-009-9090-7.
  48. Kim, C.-K., and S. S. Yum, 2012a: Marine boundary layer structure for the sea fog formation off the west coast of the Korean Peninsula. Pure Appl. Geophys., 169, 1121-1135, doi: 10.1007/s00024-011-0325-z.
  49. Kim, C.-K., and S. S. Yum, 2012b: A numerical study of sea fog formation over cold sea surface using a one-dimensional turbulence model coupled with the Weather Research and Forecasting Model. Bound.-Layer Meteor., 143, 481-505, doi: 10.1007/s10546-012-9706-9.
  50. Kim, C.-K., and S. S. Yum, 2013: A study on the transition mechanism of stratus cloud in fog over warm sea surface using a single column model coupled with WRF. Asia-Pac. J. Atmos. Sci., 49, 245-257, doi: 10.1007/s13143-013-0024-z.
  51. Kim, C.-K., S. S. Yum, and Y.-S. Park, 2016: A numerical study of winter orographic seeding experiments in Korea using the Weather Research and Forecasting model. Meteor. Atmos. Phys., 128, 23-38, doi: 10.1007/s00703-015-0402-4.
  52. Kim, D.-K., Y.-H. Kim, and D.-E. Chang, 2011: A study of microphysical properties within a pecipitation system using wind profiler spectra. Asia-Pac. J. Atmos. Sci., 47, 413-420, doi: 10.1007/s13143-011-0026-7.
  53. Kim, D.-K., Y.-H. Kim, and K.-Y. Chung, 2013: Vertical structure and microphysical characteristics of typhoon Kompasu (2010) at landfall. Asia-Pac. J. Atmos. Sci., 49, 161-169, doi: 10.1007/s13143-013-0017-y.
  54. Kim, D.-S., K.-S. S. Lim, K. Kim, and G. Lee, 2020: Effects of the realistic description for the terminal fall velocity-diameter relationship of raindrops on the simulated summer precipitation over South Korea. Atmosphere, 30, 421-437, doi: 10.14191/Atmos.2020.30.4.421 (in Korean with English abstract).
  55. Kim, H.-L., H.-S. Park, H. S. Park, and J.-S. Park, 2014: Study on the application of 2D video disdrometer to develop the polarimetric radar data simulator. Atmosphere., 24, 173-188, doi: 10.14191/Atmos.2014.24.2.173.
  56. Kim, H.-L., M.-K. Suk, H.-S. Park, G.-W. Lee, and J.-S. Ko, 2016: Dual-polarization radar rainfall estimation in Korea according to raindrop shapes obtained by using a 2-D video disdrometer. Atmos. Meas. Tech., 9, 3863-3878, doi: 10.5194/amt-9-3863-2016, 2016.
  57. Kim, J. H., S. S. Yum, Y.-G. Lee, and B.-C. Choi, 2009: Ship measurements of submicron aerosol size distributions over the Yellow Sea and the East China Sea. Atmos. Res., 93, 700-714. https://doi.org/10.1016/j.atmosres.2009.02.011
  58. Kim, J. H., S. S. Yum, S. Shim, S.-C. Yoon, J. G. Hudson, J. Park, and S.-J. Lee, 2011: On aerosol hygroscopicity, cloud condensation nuclei (CCN) spectra and critical supersaturation measured at two remote islands of Korea between 2006 and 2009. Atmos. Chem. Phys., 11, 12627-12645, doi: 10.5194/acp-11-12627-2011.1
  59. Kim, J. H., M. Park, S. Shim, and S. S. Yum, 2012: On the contrast of aerosol size distribution and cloud condensation nuclei concentrations between the east and the west of the Korean Peninsula. Atmosphere, 22, 87-96, doi: 10.14191/Atmos.2012.22.1.087.
  60. Kim, J. H., M. Park, S. Shim, W. J. Kim, M. Park, J. Kim, M. Kim, and S. C. Yoon, 2014: On the submicron aerosol distributions and CCN number concentrations in and around the Korean Peninsula. Atmos. Chem. Phys., 14, 8763-8779, doi: 10.5194/acp-14-8763-2014.
  61. Kim, K., W. Bang, E.-C. Chang, F. J. Tapiador, C.-L. Tsai, E. Jung, and G. Lee, 2021: Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018). Atmos. Chem. Phys., 21, 11955-11978, doi: 10.5194/acp-21-11955-2021.
  62. Kim, K.-E., 1991: Physical factors affecting warm rain development. J. Korean Meteor. Soc., 27, 325-332.
  63. Kim, K.-E., D.-I. Lee, J.-G. Park, and S.-G. Park, 1995: Formation and precipitation development of tropical cumuli observed by single Doppler radar. Atmosphere, 31, 363-372.
  64. Kim, K.-E., B.-H. Heo, and Y. Shibagaki, 2000: The retrieval of raindrop size distributions from VHF radar Doppler spectra using an iterative deconvolution technique. J. Korean Meteor. Soc., 36, 87-104.
  65. Kim, N., and Coauthors, 2017: Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign. Atmos. Environ., 153, 217-232, doi: 10.1016/j.atmosenv.2017.01.034.
  66. Kim, N., and Coauthors, 2018: Impact of urban aerosol properties on cloud condensation nuclei (CCN) activity during the KORUS-AQ field campaign. Atmos. Environ., 185, 221-236, doi: 10.1016/j.atmosenv.2018.05.019.
  67. Kim, N., S. S. Yum, M. Park, J. S. Park, H. J. Shin, and J. Y. Ahn, 2020: Hygroscopicity of urban aerosols and its link to size-resolved chemical composition during spring/summer in Seoul, Korea. Atmos. Chem. Phys., 20, 11245-11262, doi: 10.5194/acp-20-11245-2020.
  68. Kim, S. S., 1969: Some comments on the results of worldwide measurements of ice nucleus concentrations. J. Korean Meteor. Soc., 5, 23-34.
  69. Kim, S.-W., J. Heo, and J.-U. Park, 2021: Relationship between submicron particle formation and air mass history observed in the Asian continental outflow at Gosan, Korea, during 2008-2018. Air Qual. Atmos. Health, 14, 291-300, doi: 10.1007/s11869-020-00934-3.
  70. Kim, W., and S. S. Yum, 2015: Development and validation of the coupled system of unified model and PArameterized FOG (PAFOG). Atmosphere, 25, 149-154, doi: 10.14191/Atmos.2015.25.1.149.
  71. Kim, W., S. S. Yum, and C. K. Kim, 2020a: Numerical simulation of sea fog over the Yellow Sea: Comparison between UM+PAFOG and WRF+PAFOG coupled systems. Asia-Pac. J. Atmos. Sci., 56, 89-105, doi: 10.1007/s13143-019-00134-9.
  72. Kim, W., S. S. Yum, J. Hong, and J. I. Song, 2020b: Improvement of fog predictability by the nudging of a meteorological tower data in the WRF and PAFOG coupled model. Atmosphere, 11, 311, doi: 10.3390/atmos11030311.
  73. Kim, Y., S.-C. Yoon, S.-W., K.-Y. Kim, H.-C. Lim, and J. Ryu, 2013: Observation of new particle formation and growth events in Asian continental outflow. Atmos. Environ., 64, 160-168, doi: 10.1016/j.atmosenv.2012.09.057.
  74. Kim, Y., S.-C. Yoon, S.-W., K.-Y. Kim, M.-H. Kim, and K.-H. Park, 2014a: Aerosol properties and associated regional meteorology during winter pollution event at Gosan climate observatory, Korea. Atmos. Environ., 85, 9-17, doi: 10.1016/j.atmosenv.2013.11.041.
  75. Kim, Y., S.-C. Yoon, and S.-W., K.-Y. Kim, 2014b: Observation of new particle formation and growth under cloudy conditions at Gosan Climate Observatory, Korea. Meteor. Atmos. Phys., 126, 81-90, doi: 10.1007/s00703-014-0336-2.
  76. Kim, Y. A., and W. K. Choi, 2017, A Study on the Monthly Characteristics of Solar UV Radiation in Gosan, Jeju. J. Korean Meteor. Soc., 27, 291-300, doi: 10.14191/Atmos.2017.27.3.291 (in Korean with English abstract).
  77. Kim, Y.-C., S.-M. Lee, and G.-B. Jin, 1990: The effects of ambient wind on warm cloud development. J. Korean Meteor. Soc., 26, 178-191.
  78. Kim, Y.-C., and S.-M. Lee, 1991: The role of the liquid drop size disbribution and ambient wind in precipitation development. J. Korean Meteor. Soc., 27, 301-309. https://doi.org/10.3348/jkrs.1991.27.2.271
  79. Kim, Y.-J., B.-G. Kim, J.-K. Shim, and B.-C. Choi, 2018: Observation and numerical simulation of cold clouds and snow particles in the Yeongdong region. Asia-Pac. J. Atmos. Sci., 54, 499-510, doi: 10.1007/s13143-018-0055-6.
  80. Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602-617, doi: 10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.
  81. Kwak, M. K., and J. H. Kim, 2011, The Radiative Characteristics of EUV-B over the Korean Peninsula and Exposure Time for Synthesizing Adequate Vitamin D. J. Korean Meteor. Soc., 21, 123-130, doi: 10.14191/Atmos.2011.21.1.123 (in Korean with English abstract).
  82. Kwon, S., S.-H. Jung, and G. Lee, 2015a: Inter-comparison of radar rainfall rate using Constant Altitude Plan Position Indicator and hybrid surface rainfall maps. J. Hydrol., 531, 234-247, doi: 10.1016/j.jhydrol.2015.08.063.
  83. Kwon, S., G. Lee, and G. Kim, 2015b: Rainfall estimation from an operational S-band dual-polarization radar: Effect of radar calibration. J. Meteor. Soc. Japan, 93, 65-79, doi: 10.2151/jmsj.2015-005.
  84. Kwon, Y.-C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi: 10.1175/MWR-D-16-0034.1.
  85. La, I., S. S. Yum, J. Yeom, and R. Shaw, 2022: Influence of entrainment on centimeter-scale cloud microphysics in marine stratocumulus clouds observed during CSET, J. Atmos. Sci., 79, 2935-2948, doi: 10.1175/JAS-D-22-0005.1.
  86. Lee, C., K.-H. Chang, J.-W. Jung, J.-W. Cha, Y.-J. Choi, and K. Kim, 2011: Strategy for the meteorological and environmental airborne observations over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 47, 91-96. https://doi.org/10.1007/s13143-011-1005-8
  87. Lee, C.-K., G W. Lee, and K.-E. Kim, 2007: Variability of the rain drop size distributions within a storm. J. Korean Meteor. Soc., 43, 1-16. https://doi.org/10.1002/qj.49704318102
  88. Lee, G., I. Zawadzki, W. Szyrmer, D. Sempere-Torres, and R. Uijlenhoet, 2004: A general approach to doublemoment normalization of drop size distributions. J. Appl. Meteorol., 43, 264-281. https://doi.org/10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2
  89. Lee, G., and I. Zawadzki, 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteorol., 44, 241-255. https://doi.org/10.1175/JAM2183.1
  90. Lee, H., and S. S. Yum, 2012: Implementation of improved ice particle collision efficiency in Takahashi cloud model. J. Korean Meteor. Soc., 33, 73-85, doi: 10.14191/Atmos.2012.22.1.073.
  91. Lee, H., S. S. Yum, and S.-S. Lee, 2014: A modeling study of the aerosol effects on ice microphysics in convective cloud and precipitation development under different thermodynamic conditions. Atmos. Res., 145-146, 112-129, doi: 10.1016/j.atmosres.2014.03.022.
  92. Lee, H., and J.-J. Baik, 2016: Effects of uncertainty in graupel terminal velocity on cloud simulation. Atmosphere, 26, 435-444 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2016.26.3.435
  93. Lee, H., and J.-J. Baik, 2017: A physically based autoconversion parameterization. J. Atmos. Sci., 74, 1599-1616, doi: 10.14191/Atmos.2016.26.3.435.
  94. Lee, H., A. M. Fridlind, and A. S. Ackerman, 2019: An evaluation of size-resolved cloud microphysics scheme numerics for use with radar observations. Part I: Collision-coalescence. J. Atmos. Sci., 76, 247-263, doi: 10.1175/JAS-D-20-0213.1.
  95. Lee, H. K., J .B. Jee, J. S. Min, S. G. Kim, and J. H. Chae, 2018: Analysis of Meteorological and Radiation Characteristics using WISE Observation Data. J. Korean Earth Sci. Soc., 39, 89-102, doi: 10.5467/JKESS.2018.39.1.89 (in Korean with English abstract).
  96. Lee, N.-Y., 1986: An experimental study of the brake effect of compensating motions on warm cloud development. J. Korean Meteor. Soc., 22, 1, 23-41.
  97. Lee, N.-Y., and S.-M. Lee, 1986: A computation of the evolution of cloud drop size distribution by condensation-evaporation process. J. Korean Meteor. Soc., 22, 2, 28-34.
  98. Lee, S., and Coauthors, 2012: Spectral dependency of light scattering/absorption and hygroscopicity of pollution and dust aerosols in Northeast Asia. Atmos. Environ., 50, 246-254, doi: 10.1016/j.atmosenv.2011.12.026.
  99. Lee, S.-C., J. H. Kim, S. S. Yum, C. Cho, and K. H. Ahn, 2007: Atmospheric aerosol hygroscopicity measurements with H-TDMA. Particle and Aerosol Res., 3, 95-103.
  100. Lee, S. J. and H. K. Cho, 1980: Spectral Distribution of Direct Solar Radiation and Integral Atmospheric Turbidity. J. Korean Meteor. Soc., 16, 10-16 (in Korean with English abstract).
  101. Lee, S.-M., 1984: Numerical computation of cloud droplet growth by collision and coalescence process. J. Korean Meteor. Soc., 20, 53-59.
  102. Lee, S.-M., 1992: A second pulsation in cumulus cloud development. J. Korean Met. Soc., 28, 455-463. 
  103. Lee, S.-M., S. Kim, T.-Y. Lee, and H.-Y. Chun, 2000: Effects of ice particles on the development of precipitation in deep convective clouds. J. Korean. Meteor. Soc., 36, 141-152.
  104. Lee, S.-S., T.-Y. Lee, S.-M. Lee, and S.-Y. Hong, 2001: The effects of nucleation rate of cloud ice on the development of cloud and precipitation. J. Korean. Meteor. Soc., 37, 239-251.
  105. Lee, Y. M., J. H. Bae, and J. K. Park, 2017: A Study on Prediction Techniques through Machine Learning of Real-time Solar Radiation in Jeju. J. Environ. Sci. Int., 26, 521-527, doi: 10.5322/JESI.2017.26.4.521 (in Korean with English abstract).
  106. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi: 10.1175/2009MWR2968.1.
  107. Lim, K.-S. S., 2019: Bulk-type cloud microphysics parameterization in atmospheric models. Atmosphere, 29, 227-239, doi: 10.14191/Atmos.2019.29.2.227 (in Korean with English abstract).
  108. Lim, S., M. Lee, S.-W. Kim, S.-C. Yoon, G. Lee, and Y. Lee, 2014: Absorption and scattering properties of organic carbon versus sulfate dominant aerosols at Gosan climate observatory in Northeast Asia. Atmos. Chem. Phys., 14, 7781-7793, doi: 10.5194/acp-14-7781-2014.
  109. Lim, S., M. Lee, S.-W. Kim, and P. Laj, 2018: Sulfate alters aerosol absorption properties in East Asian outflow. Sci. Rep., 8, 1-7, doi: 10.1038/s41598-018-23021-1.
  110. Lim, Y.-K., J. Kim, H. C. Lee, S.-S. Lee, J.-W. Cha, and S. B. Ryoo., 2019: Aerosol physical characteristics over the yellow sea during the KORUS-AQ field campaign: Observations and air quality model simulations. Asia-Pac. J. Atmos. Sci., 55, 629-640, doi: 10.1007/s13143-018-00100-x.
  111. Liu, Y., P. Daum, and S. S. Yum, 2008: Ship tracks revisited: new understanding and cloud parameterization. Asia-Pac. J. Atmos. Sci., 44, 1-9.
  112. Loffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeor. J. Atmos. Oceanic. Technol., 17, 130-139. https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
  113. Marshall, J. S., and W. Mck. Palmer, 1948. The distribution of raindrop size. J. Atmos. Sci., 5, 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  114. Min, K. D., 1966: The rate of temperature variation of falling raindrops through air. J. Korean Meteor. Soc., 2, 11-16.
  115. Moon, J.-Y., D.-K. Kim, Y.-H. Kim, J.-C. Ha, and K.-Y. Chung, 2013: Analysis of summer rainfall case over southern coast using MRR and PARSIVEL disdrometer measurements in 2012. Atmosphere., 23, 265-273, doi: 10.14191/Atmos.2013.23.3.265.
  116. Nam, K. Y., S. B. Ryoo, W. T. Kwon, and J. K. Kim, 2002, The influences of the temperature and geopotential height fields according to the expanded radiation grid in GDAPS. Asia-Pac. J. Atmos. Sci., 38, 421-429 (in Korean with English abstract).
  117. Noh, Y., D. Oh, F. Hoffmann, and S. Raasch, 2018: A cloud microphysics parameterization for shallow cumulus clouds based on Lagrangian cloud model simulations. J. Atmos. Sci., 75, 4031-4047, doi: 10.1175/JAS-D-18-0080.1.
  118. Oh, S. N., and H. K. Cho, 1975: Secular and seasonal variations of atmospheric turbidity at Seoul. J. Korean Meteor. Soc., 11, 31-40.
  119. Oue, M., H. Uyeda, and D.-I. Lee, 2011: Raindrop size distribution parameters estimated from polarimetric radar variables in convective cells around Okinawa Island during the Baiu period. Asia-Pac. J. Atmos. Sci., 47, 33-44, doi: 10.1007/s13143-011-1003-x.
  120. Park, D.-H., and Coauthors, 2021: Boundary layer versus free tropospheric submicron particle formation: A case study from NASA DC-8 observations in the Asian continental outflow during the KORUS-AQ campaign. Atmos. Res., 264, 105857, doi: 10.1016/j.atmosres.2021.105857.
  121. Park, J.-U., H.-J. Kim, J. Choi, J.-S. Park, J. Heo, and S.-W. Kim, 2021: Observation of aerosol size distribution and new particle formation under different air masses arriving at the northwesternmost South Korean island in the Yellow Sea. Atmos. Res., 255, 105537, doi: 10.1016/j.atmosres.2021.105537.
  122. Park, M., Yum, S. S., Kim, J. H., 2015: Characteristics of submicron aerosol number size distribution and new particle formation events measured in Seoul, Korea, during 2004~2012. Asia-Pac. J. Atmos. Sci., 51, 1-10, doi: 10.1007/s13143-014-0055-0.
  123. Park, M., Yum, S. S., N. Kim, J. W. Cha, and S. B. Ryoo, 2016: Characteristics of aerosol and cloud condensation nuclei concentrations measured over the Yellow Sea on a meteorological research vessel, Gisang 1. Atmosphere, 26, 243-256, doi: 10.14191/Atmos.2016.26.2.243.
  124. Park, M., Yum, S. S., N. Kim, J. W. Cha, B. Shin, and S. B. Ryoo, 2018: Characterization of submicron aerosols and CCN measured over the Yellow sea onboard the Gisang 1 research vessel using the positive matrix factorization analysis method. Atmos. Res., 214, 430-441, doi: 10.1016/j.atmosres.2018.08.015.
  125. Park, M., Yum, S. S., N. Kim, B. E. Anderson, A. Beyersdorf, and K. L. Thornhill, 2020: On the submicron aerosol distributions and C C N activity in and around the Korean Peninsula measured onboard the NASA DC-8 research aircraft during the KORUS-AQ campaign. Atmos. Res., 243, doi: 10.1016/j.atmosres.2020.105004.
  126. Park, M., Yum, S. S., N. Kim, and Coauthors, 2021: Characterization of submicron aerosols over the Yellow Sea measured onboard the Gisang 1 research vessel in 2018-2019 spring. Environ. Pollut., 284, 117180, doi:10.1016/j.envpol.2021.117180.
  127. Park, R. J., M. J. Kim, J. I. Jeong, D. Youn, and S. Kim, 2010: A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia. Atmos. Environ., 44, 1414-1421, doi: 10.1016/j.atmosenv.2010.01.042.
  128. Park, S., 2014: A unified convection scheme (UNICON). Part I: Formulation. J. Atmos. Sci., 71, 3902-3930, doi: 10.1175/JAS-D-13-0233.1.
  129. Schmale, J., and Coauthors, 2018: Long term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories. Atmos. Chem. Phys. 18, 2853-2881, doi: 10.5194/acp-18-2853-2018.
  130. Seo, W.-S., and Coauthors, 2015: Study on characteristics of snowfall and snow crystal habits in the ESSAY (Experiment on Snow Storms At Yeongdong) campaign in 2014. Atmosphere, 25, 261-270, doi: 10.14191/Atmos.2015.25.2.261.
  131. Sheppard, B. E., 1990: Measurement of raindrop size distributions using a small Doppler radar. J. Atmos. Oceanic Technol., 7, 255-268, doi: 10.1175/1520-0426(1990)007<0255:MORSDU>2.0.CO;2.
  132. Shin, J., and S. Park, 2020: A stochastic unified convection scheme (UNICON). Part I: Formulation and single-column simulation for shallow convection. J. Atmos. Sci., 77, 583-610, doi: 10.1175/JAS-D-19-0117.1.
  133. Song, H.-J., and B.-J. Sohn, 2018: An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 54, 225-236, doi: 10.1007/s13143-018-0006-2.
  134. Song, K. Y., and S. S. Yum, 2004: Maritime-continental contrasts of cloud microphysical during ACE-Asia. Asia-Pac. J. Atmos. Sci., 40, 531-540.
  135. Song, M., M. Lee, J. H. Kim, S. S. Yum, G. Lee, and K.-R. Kim, 2010: New particle formation and growth in relation to vertical mixing and chemical species during ABC-EAREX2005. Atmos. Res., 97, 359-370, doi:10.1016/j.atmosres.2010.04.013.
  136. Tokay, A., and D. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteorol., 35, 355-371. https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
  137. Um, J., and Coauthors, 2018: Microphysical characteristics of frozen droplet aggregates from deep convective clouds. Atmos. Chem. Phys., 18, 16915-16930, doi: 10.5194/acp-18-16915-2018.
  138. Um, J., 2020: Calculations of optical properties of cloud particles to improve the accuracy of forward scattering probes for in-situ aircraft cloud measurements. Atmosphere, 30, 75-89, doi: 10.14191/Atmos.2020.30.1.075.
  139. Um, J., S. Jang, J. Kim, S. Park, H. Jung, S. Han, and Y. Lee, 2021: Calculations of the single-scattering properties of non-spherical ice crystals: Toward physically consistent cloud microphysics and radiation. Atmosphere, 31, 113-141, doi: 10.14191/Atmos.2021.31.1.113.
  140. Wang, H., J. Yin, N. Wu, and W. Ding, 2021: Microphysical Structures of an Extreme Rainfall Event Over the Coastal Metropolitan City of Guangzhou, China: Observation Analysis with Polarimetric Radar. Asia-Pac. J. Atmos. Sci., 58, 1-14, doi: 10.1007/s13143-022-00289-y.
  141. Wang, J., P. H. Daum, S. S. Yum, Y. Liu, G. I. Senum, M.-L. Lu, J. H. Seinfeld, and H. Jonsson, 2009: Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: result from the Marine Stratus/Stratocumulus Experiment (MASE). J. Geophys. Res., 114, D18210, doi: 10.1029/2008JD011035.
  142. Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Sci., 37, 1024, doi: 10.1029/2000RS002603.
  143. Yang, H., and S. S. Yum, 2007: Effects of Prescribed Initial Cloud Droplet Spectra on Convective Cloud and Precipitation Developments under Different Thermodynamic Conditions: a Modeling and Observational Study. Atmos. Res., 86, 207-224. https://doi.org/10.1016/j.atmosres.2007.04.004
  144. Yang, I. K., 1965: A preliminary survey on the seeding experiment in Korea. J. Korean Meteor. Soc., 1, 8-13.
  145. Yeom, J. M., S. S. Yum, Y. Liu, and C. Lu, 2017: A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign. Atmos. Res., 194, 89-99, doi:10.1016/j.atmosres.2017.04.028.
  146. Yeom, J. M., S. S. Yum, F. Mei, B. Schmid, J. Comstock, L. A. Machado, and M. A. Cecchini, 2019: Impact of secondary droplet activation on the contrasting cloud microphysical relationships during the wet and dry seasons in the Amazon. Atmos. Res., 230, doi: 10.1016/j.atmosres.2019.104648.
  147. Yeom, J. M., and Coauthors, 2021: Vertical variation of cloud microphysical relationships for marine stratocumulus clouds observed during the ACE-ENA campaign, J. Geophys. Res., 126, 1-19, e2021JD034700, doi: 10.1029/2021JD034700.
  148. Yoo, J. M, and H. K. Cho, 1979: The Characteristics of the Skylight Scattering Phase Function on the Atmospheric Turbidity. J. Korean Meteor. Soc., 15, 1-9 (in Korean with English abstract). https://doi.org/10.3348/jkrs.1979.15.2.373
  149. Yoo, J. M, and Coauthors, 2007, Intercomparison of Shortwave Radiative Transfer Models for a Rayleigh Atmosphere. J. Korean Earth Sci. Soc., 28, 298-310 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2007.28.3.298
  150. Yoo, J. M, and Coauthors, 2008: Intercomparison of Shortwave Radiative Transfer Models for Aerosol-laden Atmospheres. J. Korean Earth Sci. Soc., 29, 128-139. https://doi.org/10.5467/JKESS.2008.29.2.128
  151. You, C.-H., D.-I. Lee, M. Jang, K.-J. Seo, K.-E. Kim, and B.-S. Kim, 2004: The characteristics of rain drop size distributions using a POSS in Busan area. J. Korean Meteor. Soc., 40, 713-724.
  152. You, C.-H., D.-I. Lee, M. Jang, H.-K. Kim, J.-H. Kim, and K.-E. Kim, 2005: Variation of rainrate and radar reflectivity in Busan area and its measurement by cloud type. J. Korean Meteor. Soc., 40, 191-200.
  153. Yum, S. S., and S.-M. Lee, 1988: A computation of cloud drop salinity in the collection process. J. Korean Meteor. Soc., 24, 36-41.
  154. Yum, S. S., and J. G. Hudson, 2002: Maritime/continental microphysical contrasts in stratocumulus. Tellus, Series B, 54, 61-73. https://doi.org/10.3402/tellusb.v54i1.16648
  155. Yum, S. S., S.-N. Oh, J.-Y. Kim, C.-K. Kim, and J.-C. Nam, 2004: Measurements of cloud droplet size spectra using a forward scattering spectrometer probe in the Korean Peninsula. J. Korean Meteor. Soc., 40, 623-631.
  156. Yum, S. S., 2004: Scale dependence of cloud microphysical relationships in small cumulus clouds. Asia-Pac. J. Atmos. Sci., 40, 531-540.
  157. Yum, S. S., and J. G. Hudson, 2004: Wintertime/summertime contrasts of cloud condensation nuclei and cloud microphysics over the Southern Ocean. J. Geophys. Res., 109, D06204, doi: 10.1029/2003JD003864.
  158. Yum, S. S., J. G. Hudson, K. Y. Song, and B. Choi, 2005: Springtime cloud condensation nuclei concentrations on the west coast of the Korea. Geophys. Res. Lett., 32, L09814, doi: 10.1029/2005GL022641.
  159. Yum, S. S., G. Roberts, J. H. Kim, K. Song, and D. Kim, 2007: Submicron aerosol size distributions and cloud condensation nuclei concentrations measured at Gosan, Korea during the ABC-EAREX 2005. J. Geophys. Res., 112, D22S32, doi: 10.1029/2006JD008212.
  160. Yum, S. S., B. G. Kim, S.-W. Kim, L.-S. Chang, and S. Kim, 2011: A review of clouds and aerosols. J. Climate Change Res., 2, 253-267.
  161. Yum, S. S., J. Wang, Y. Liu, G. Senum, S. Springston, R. McGraw, and J. M. Yeom, 2015: Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project. J. Geophys. Res., 120, 5047-5069, doi: 10.1002/2014JD022802.
  162. Zo, I. S., J. B. Jee, and K. T. Lee, 2014: Development of GWNU (Gangneung-Wonju National University) One-Layer Transfer Model for Calculation of Solar Radiation Distribution of the Korean Peninsula, Asia-Pac. J. Atmos. Sci., 50, 23-32, doi: 10.1007/s13143-014-0047-0.
  163. Zo, I. S., J. B. Jee, K. T. Lee, and B. Y. Kim, 2016a: Analysis of Solar Radiation on the Surface Estimated from GWNU Solar Radiation Model with Temporal Resolution of Satellite Cloud Fraction. Asia-Pac. J. Atmos. Sci., 52, 405-412, doi: 10.1007/s13143-016-0024-x.
  164. Zo, I. S., J. B. Jee, K. T. Lee, and B. Y. Kim, 2016b: Radiometer measurement intercomparison using absolute cavity radiometer in regional radiometer center at Tsukuba, Japan. New & Renewable Energy, 12, 5-13.
  165. Zo, I. S., J. B. Jee, K. T. Lee, and B. Y. Kim, 2017: Analysis of the Thermal Dome Effect from Global Solar Radiation Observed with a Modified Pyranometer. Current Optics and Photonics, 1, 263-270.