DOI QR코드

DOI QR Code

UNCONDITIONAL STABILITY AND CONVERGENCE OF FULLY DISCRETE FEM FOR THE VISCOELASTIC OLDROYD FLOW WITH AN INTRODUCED AUXILIARY VARIABLE

  • Huifang Zhang (School of Mathematics and Information Sciences Yantai University) ;
  • Tong Zhang (School of Mathematics and Information Sciences Yantai University)
  • Received : 2021.11.05
  • Accepted : 2022.10.27
  • Published : 2023.03.01

Abstract

In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.

Keywords

Acknowledgement

This work was financially supported by NSF of China (No.11971152) and NSF of Henan Province (202300410167).

References

  1. M. M. Akhmatov and A. P. Oskolkov, Convergence difference schemes for equations of motion of an Oldroyd fluid, J. Soviet Math. 47 (1989), no. 6, 2926-2933; translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 159 (1987), Chisl. Metody i Voprosy Organiz. Vychisl. 8, 143-152, 179. https://doi.org/10.1007/BF01305224 
  2. J. R. Cannon, R. E. Ewing, Y. He, and Y. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations, Internat. J. Engrg. Sci. 37 (1999), no. 13, 1643-1662. https://doi.org/10.1016/S0020-7225(98)00142-6 
  3. E. Erturk, T. C. Corke, and C. GAokc Aol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer Meth Fl. 48 (2005), 747-774.  https://doi.org/10.1002/fld.953
  4. L. Ge, H. Niu, and J. Zhou, Convergence analysis and error estimate for distributed optimal control problems governed by Stokes equations with velocity-constraint, Adv. Appl. Math. Mech. 14 (2022), no. 1, 33-55. https://doi.org/10.4208/aamm.oa-2020-0302 
  5. U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phy. 48 (1982), 387-411.  https://doi.org/10.1016/0021-9991(82)90058-4
  6. F. X. Giraldo, M. Restelli, and M. Lauter, Semi-implicit formulations of the NavierStokes equations: application to nonhydrostatic atmospheric modeling, SIAM J. Sci. Comput. 32 (2010), no. 6, 3394-3425. https://doi.org/10.1137/090775889 
  7. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986. https://doi.org/10.1007/978-3-642-61623-5 
  8. J. Guan, S. Jing, and Z. Si, A rotational velocity-correction projection method for unsteady incompressible magnetohydrodynamics equations, Comput. Math. Appl. 80 (2020), no. 5, 809-821. https://doi.org/10.1016/j.camwa.2020.04.017 
  9. J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 44-47, 6011-6045. https://doi.org/10.1016/j.cma.2005.10.010 
  10. Y. Guo and Y. He, Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), no. 8, 2583-2609. https://doi.org/10.3934/dcdsb.2015.20.2583 
  11. E. Hansen and T. Stillfjord, Convergence of the implicit-explicit Euler scheme applied to perturbed dissipative evolution equations, Math. Comp. 82 (2013), no. 284, 1975-1985. https://doi.org/10.1090/S0025-5718-2013-02702-0 
  12. Y. He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comp. 77 (2008), no. 264, 2097-2124. https://doi.org/10.1090/S0025-5718-08-02127-3 
  13. Y. He, P. Huang, and X. Feng, H2-stability of the first order fully discrete schemes for the time-dependent Navier-Stokes equations, J. Sci. Comput. 62 (2015), no. 1, 230-264. https://doi.org/10.1007/s10915-014-9854-9 
  14. Y. He and J. Li, A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations, J. Comput. Appl. Math. 235 (2010), no. 3, 708-725. https://doi.org/10.1016/j.cam.2010.06.025 
  15. Y. He, Y. Lin, S. S. P. Shen, W. Sun, and R. Tait, Finite element approximation for the viscoelastic fluid motion problem, J. Comput. Appl. Math. 155 (2003), no. 2, 201-222.  https://doi.org/10.1016/S0377-0427(02)00864-6
  16. J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275-311. https://doi.org/10.1137/0719018 
  17. J. Jin, T. Zhang, and J. Li, H2-stability of the first order Galerkin method for the Boussinesq equations with smooth and non-smooth initial data, Comput. Math. Appl. 75 (2018), no. 1, 248-288. https://doi.org/10.1016/j.camwa.2017.09.014 
  18. X. Li and J. Shen, Error analysis of the SAV-MAC scheme for the Navier-Stokes equations, SIAM J. Numer. Anal. 58 (2020), no. 5, 2465-2491. https://doi.org/10.1137/19M1288267 
  19. X. Li and J. Shen, On a SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes phasefield model and its error analysis for the corresponding Cahn-Hilliard-Stokes case, Math. Models Methods Appl. Sci. 30 (2020), no. 12, 2263-2297. https://doi.org/10.1142/S0218202520500438 
  20. X. Li, J. Shen, and Z. Liu, New SAV-pressure correction methods for the Navier-Stokes equations: stability and error analysis, Math. Comp. 91 (2021), no. 333, 141-167. https://doi.org/10.1090/mcom/3651 
  21. X. Li, J. Shen, and H. Rui, Energy stability and convergence of SAV block-centered finite difference method for gradient flows, Math. Comp. 88 (2019), no. 319, 2047-2068. https://doi.org/10.1090/mcom/3428 
  22. L. Lin, Z. Yang, and S. Dong, Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable, J. Comput. Phys. 388 (2019), 1-22. https://doi.org/10.1016/j.jcp.2019.03.012 
  23. Z. Liu and X. Li, The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing, SIAM J. Sci. Comput. 42 (2020), no. 3, B630-B655. https://doi.org/10.1137/19M1305914 
  24. J. Marti and P. B. Ryzhakov, An explicit-implicit finite element model for the numerical solution of incompressible Navier-Stokes equations on moving grids, Comput. Methods Appl. Mech. Engrg. 350 (2019), 750-765. https://doi.org/10.1016/j.cma.2019.03.007 
  25. H. Niu, D. Yang, and J. Zhou, Numerical analysis of an optimal control problem governed by the stationary Navier-Stokes equations with global velocity-constrained, Commun. Comput. Phys. 24 (2018), no. 5, 1477-1502. https://doi.org/10.4208/cicp.oa2017-0045 
  26. A. K. Pani and J. Y. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model, IMA J. Numer. Anal. 25 (2005), no. 4, 750-782. https://doi.org/10.1093/imanum/dri016 
  27. A. K. Pani, J. Y. Yuan, and P. D. Dam'azio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one, SIAM J. Numer. Anal. 44 (2006), no. 2, 804-825. https://doi.org/10.1137/S0036142903428967 
  28. J. Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes, SIAM J. Numer. Anal. 29 (1992), no. 1, 57-77. https://doi.org/10.1137/0729004 
  29. J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal. 56 (2018), no. 5, 2895-2912. https://doi.org/10.1137/17M1159968 
  30. J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys. 353 (2018), 407-416. https://doi.org/10.1016/j.jcp.2017.10.021 
  31. X. Shen, Y. Wang, and Z. Si, A rotational pressure-correction projection methods for unsteady incompressible magnetohydrodynamics equations, Appl. Math. Comput. 387 (2020), 124488, 21 pp. https://doi.org/10.1016/j.amc.2019.06.002 
  32. P. E. Sobolevskii, Stabilization of viscoelastic fluid motion (Oldroyd's mathematical model), Diff. Integral Equ. 7 (1994), no. 5-6, 1597-1612.  https://doi.org/10.57262/die/1369329533
  33. J. Su and Y. He, The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 9, 3421-3438. https://doi.org/10.3934/dcdsb.2017173 
  34. R. Temam, Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam, 1977. 
  35. Y. Wang, S. Li, and Z. Si, A second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 4, 1477-1500. https://doi.org/10.1051/m2an/2017049 
  36. K. Wang, Z. Si, and Y. Yang, Stabilized finite element method for the viscoelastic Oldroyd fluid flows, Numer. Algorithms 60 (2012), no. 1, 75-100. https://doi.org/10.1007/s11075-011-9512-3 
  37. Z. Yang and S. Dong, An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices, J. Comput. Phys. 393 (2019), 229-257. https://doi.org/10.1016/j.jcp.2019.05.018 
  38. X. Yang, J. Zhao, and X. He, Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method, J. Comput. Appl. Math. 343 (2018), 80-97. https://doi.org/10.1016/j.cam.2018.04.027 
  39. X. Yang, J. Zhao, and Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys. 333 (2017), 104-127. https://doi.org/10.1016/j.jcp.2016.12.025 
  40. T. Zhang, D. Pedro, and J. Yuan, A large time stepping viscosity-splitting finite element method for the viscoelastic flow problem, Adv. Comput. Math. 41 (2015), no. 1, 149-190. https://doi.org/10.1007/s10444-014-9353-4 
  41. T. Zhang and Y. Qian, Stability analysis of several first order schemes for the Oldroyd model with smooth and nonsmooth initial data, Numer. Methods Partial Differential Equations 34 (2018), no. 6, 2180-2216. https://doi.org/10.1002/num.22283 
  42. T. Zhang and J. Yuan, A stabilized characteristic finite element method for the viscoelastic Oldroyd fluid motion problem, Int. J. Numer. Anal. Model. 12 (2015), no. 4, 617-635. 
  43. T. Zhang and J. Yuan, Unconditional stability and optimal error estimates of Euler implicit/explicit-SAV scheme for the Navier-Stokes equations, J. Sci. Comput. 90 (2022), no. 1, Paper No. 1, 20 pp. https://doi.org/10.1007/s10915-021-01681-y 
  44. J. Zhao, Q. Wang, and X. Yang, Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach, Internat. J. Numer. Methods Engrg. 110 (2017), no. 3, 279-300. https://doi.org/10.1002/nme.5372 
  45. J. Zhou, Z. Jiang, H. Xie, and H. Niu, The error estimates of spectral methods for 1-dimension singularly perturbed problem, Appl. Math. Lett. 100 (2020), 106001, 8 pp. https://doi.org/10.1016/j.aml.2019.106001 
  46. J. Zhou, H. Li, and Z. Zhang, A posteriori error estimates of spectral approximations for second order partial differential equations in spherical geometries, J. Sci. Comput. 90 (2022), no. 1, Paper No. 56, 30 pp. https://doi.org/10.1007/s10915-021-01696-5