DOI QR코드

DOI QR Code

Effect of temperature on service life of flexible pavement using finite element analysis

  • Amin Hamdi (Department of Civil and Environmental Engineering, Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2022.06.19
  • 심사 : 2023.02.13
  • 발행 : 2023.03.10

초록

Temperature is one of the most critical elements that influence the rutting and fatigue resistance of flexible pavements. Particularly in extreme hot regions in Saudi Arabia, high temperature would significantly reduce the rutting resistance of flexible pavements leading to reduction of pavement service life. Due to the impacts of global warming, average temperature in Saudi Arabia is expected to further increase by about 4℃ by the end of the 21st century. The substantial increase in average temperature will elevate the expected pavement maintenance and rehabilitation cost. This paper analyzes the structural effects of temperature on pavement using layered elastic analysis based on finite element techniques. The research team calculated the potential loss of pavement service life due to the projected temperature increase and climate change. The paper also analyzed potential impact of using carbon waste in asphalt concrete to tackle the derogatory impacts of temperature rise.

키워드

과제정보

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant no. (G-549-135-38). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

참고문헌

  1. Ahlborn G (1972), ELSYM5 Computer Program for Determining Stresses and Strains in Five Layer System. University of California, Berkeley. 
  2. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091. 
  3. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679. 
  4. Asadi, H., Leek, C. and Nikraz, H. (2013), "Effect of temperature on fatigue life of asphalt mixture", Proceedings of the AAPA International Flexible Pavements Conference, Brisbane, Queensland, Australia 
  5. Asphalt Institute (1982), "Research and development of asphalt institute's thickness design manual", 9th Ed., Research Report , 82(2), The Asphalt Institute. 
  6. Assie, A., Akbas, S.D., Kabeel, A.M., Abdelrahman, A.A. and Eltaher, M.A. (2022), "Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core", Steel Compos. Struct., 43(1), 79-90. https://doi.org/10.12989/scs.2022.43.1.079. 
  7. Banerji, A.K., Topdar, P. and Datta, A.K. (2023), "Study on the effect of wheel load and temperature on rutting damage of composite flexible pavement using finite element method", Proceedings of the International Conference on Advances in Structural Mechanics and Applications. 
  8. Bashiri, A.H., Akbas, S.D., Abdelrahman, A.A., Assie, A., Eltaher, M.A. and Mohamed, E.F. (2021), "Vibration of multilayered functionally graded deep beams under thermal load", Geomech. Eng., 24(6), 545-557. https://doi.org/10.12989/gae.2021.24.6.545. 
  9. Bazlamit, S.M. and Reza, F. (2005), "Changes in asphalt pavement friction components and adjustment of skid number for temperature", J. Transp. Eng., 131, 470-476.  https://doi.org/10.1061/(ASCE)0733-947X(2005)131:6(470)
  10. Burmister, D.M. (1945), "The general theory of stresses and displacement in layered systems", J. Appl. Phys., 16(2), 89-94. https://doi.org/10.1063/1.1707558. 
  11. Chiasson, A.D., Yavuzturk, C. and Ksaibati, K. (2008), "Linearized approach for predicting thermal stresses in asphalt pavements due to environmental conditions", J. Mater. Civil Eng. ASCE., 20, 118-127.  https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(118)
  12. Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 815-829. https://doi.org/10.12989/scs.2022.44.6.815. 
  13. Deifenderfer, B.K., Al-Qadi, I.L. and Deifenderfer, S.D. (2006), "Model to predict pavement temperature profile: Development and validation", J. Transportat. Eng. ASCE., 132, 162-167.  https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(162)
  14. Deng, D., Wen, S., Lu, K. and Li, L. (2020), "Calculation model for the shear strength of unsaturated soil under nonlinear strength theory", Geomech. Eng., 21(3), 247-258. https://doi.org/10.12989/gae.2020.21.3.247. 
  15. Dey, N., Debnath, B. and Sarkar, P.P. (2023), Finite element analysis of flexible pavement with non-linear material behaviour. In Recent Trends in Civil Engineering, 789-795. Springer, Singapore. 
  16. Dong, S., Yuan, X.X. and Hao, P. (2020), "An advanced local calibration method for mechanistic-empirical pavement design", Comput. Aided Civil Infrastruct. Eng., 35(11), 1276-1290. https://doi.org/10.1111/mice.12574. 
  17. El-Hakim, M., Jadoun, F.M., Lee, S. and Ningyuan, L. (2014), "Sensitivity analysis of field-to-laboratory subgrade conversion factors with AASHTOWare pavement ME design", Transport. Res. Record, 2456(1), 115-123. https://doi.org/10.3141/2456-12. 
  18. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2022), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. with Comput., 38, 3463-3482. https://doi.org/10.1007/s00366-021-01389-5. 
  19. Garcia, G. and Thompson, M. (2007), "Hma Dynamic Modulus -Temperature Relations", Project Report FHWA-ICT-07-006, Illinois Department of Transportation
  20. Hamid, A., Baaj, H. and El-Hakim, M. (2019), "Enhancing asphalt cement properties using geopoltmer-based on fly ash and glass powder", Proceedings of the 7th CSCE International Specialty Conference on Engineering Mechanics and Materials, Laval, QC, Canada. 
  21. Hamid, A., Baaj, H. and El-Hakim, M. (2023), "Temperature and aging effects on the rheological properties and performance of geopolymer-modified asphalt binder and mixtures", Materials, 16(3), 1012. https://doi.org/10.3390/ma16031012. 
  22. Hamid, A., Baaj, H., Eng, P. and El-Hakim, M. (2022), "Effect of high temperature on the behaviour of geopolymer modified asphalt binders", Proceedings of the Transportation Association of Canada 2022 Conference and Exhibition-Changing Ways for our Changing Climate//Association des transports du Canada 2022 Congres et Exposition-Approches Adaptees pour un Climat changeant. 
  23. Heukelom, W. and Klomp, A.J.G. (1962), "Dynamic testing as a means of controlling pavements during and after construction", Proceedings of the Int. Conference on the Structural Design of Asphalt Pavement, Ann Arbor, Michigan, U.S.A. 
  24. Huang, D. and Witczack, M.W. (1981), "Program DAMA (Chevron), User's Manual", Dept. of Civil Eng., University of Maryland. 
  25. Huang, H.Y. (2008), "Pavement analysis and design", second., Pearson Education Inc, and Dorling Kindersley Publishing Inc. 
  26. Krishna, L.V. (2014), "Long term temperature trends in four different climatic zones of Saudi Arabia", Int. J. Appl., 4(5). 
  27. Lee, L., Charles, R. and Simson, N. (2016), "Stress-strain behavior of Asphalt concrete in compression", Procedia Struct. Integrity, 2, 2913-2920.  https://doi.org/10.1016/j.prostr.2016.06.364
  28. Li, Q., Xiao, D.X., Wang, K.C.P. Hall, K.D. and Qiu, Y. (2011), "Mechanistic-empirical pavement design guide (MEPDG): a bird's-eye view", J. Modern Transport., 19, 114-133. https://doi.org/10.1007/BF03325749. 
  29. Ling, J., Wei, F., Zhao, H., Tian, Y. and Han, B. (2019), "Analysis of airfield composite pavement responses using full-scale accelerated pavement testing and finite element method", Constr. Build. Mater., 212, 596-606. https://doi.org/10.1016/j.conbuildmat.2019.03.336. 
  30. Lukanen, E., Stad, R.S. and Briggs, R. (2000), "Temperature prediction and adjustment factors of asphalt pavement", Office of Infrastructure Research and Development Federal Highway Adminstartion. McLean, Virginia, 5-10. 
  31. Luo, J., Huang, H., Qamhia, I.I., Tutumluer, E. and Tingle, J.S. (2021), "C-FLEX advanced finite element analysis program for flexible pavement analysis and design", Transport. Res. Record, 2675(9), 1238-1249. https://doi.org/10.1177/03611981211006724. 
  32. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Ibrahim, H.H., Ali, H.F.H., Nejati, H.R. and Rashidi, S. (2022), "Prediction of duration and construction cost of road tunnels using Gaussian process regression", Geomech. Eng., 28(1), 65-75. https://doi.org/10.12989/gae.2021.28.1.065. 
  33. Marshall, C., Meier, R.W. and Welsh, M. (2001), "Seasonal temperature effects on flexible pavements in Tennessee", Transportation Resarch Board, 80th Annu. Meeting, Jan., Washington DC. 
  34. Nazarian, S. and Alvardo, G. (2006), "Impact of temperature gradient on modulus of asphaltic concrete layers", J. Mater. Civil Eng. ASCE, 18, 492-499.  https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(492)
  35. Odnoletkova, N. and Patzek, T.W. (2021), "Data-driven analysis of climate change in Saudi Arabia: Trends in temperature extremes and human comfort indicators", J. Appl. Meteorol. Clim., 60(8), 1055-1070. https://doi.org/10.1175/JAMC-D-20-0273.1. 
  36. Qabur, A., Baaj, H. and El-Hakim, M. (2022), "Incorporation of the multi-layer plastic packaging in the asphalt binders: Physical, thermal, rheological, and storage properties evaluation", Polymers, 14(24), 5396. https://doi.org/10.3390/polym14245396. 
  37. Raffaniello, A., Bauer, M., Safiuddin, M. and El-Hakim, M. (2022), "Traffic and climate impacts on rutting and thermal cracking in flexible and composite pavements", Infrastructures, 7(8), 100. https://doi.org/10.3390/infrastructures7080100. 
  38. Ranadive, M.S. and Tapase, A.B. (2013), "Investigation of behavioral aspects of flexible pavement under various conditions by finite element method", Constitutive modeling of geomaterials, Springer-Verlag, Berlin, 2013, 765-770, http://dx.doi.org/10.1007/978-3-642-32814-5_100. 
  39. Ranadive, M.S. and Tapase, A.B. (2016), "Parameter sensitive analysis of flexible pavement", Int. J. Pavement Res. Technol., 9(6), 466-472. https://doi.org/10.1016/j.ijprt.2016.12.001. 
  40. Shanbara, H.K., Shubbar, A., Ruddock, F. andAtherton, W. (2020), "Characterizing the rutting behaviour of reinforced cold mix asphalt with natural and synthetic fibres using finite element analysis", Adv. Struct. Eng. Rehab., 221-227. https://doi.org/10.1007/978-981-13-7615-3_20 
  41. Shen, K., Zhang, H., Tong, J., Wang, H. and Chen, X. (2022), "Dynamic elastic analysis of flexible pavements under moving vehicles: a semi-analytical finite element treatment", Road Mater. Pavement Des., 23(6), 1440-1450. https://doi.org/10.1080/14680629.2021.1883467. 
  42. Sinha, A.K., Chandra, S. and Kumar, P. (2014), "Finite element analysis of flexible pavement with different subbase materials", Indian Highways, New Delhi, 42(2), 53-63. 
  43. Sivaneswaran, Y.N., Piecce, L.M. and Mahoney, J.P. (2001), Everstress (Version 5.0), "Layered Elastic Analysis Program", Washington State, Department of Transportation. 
  44. Smith, M. (2009), ABAQUS/Standard User's Manual, Providence, RI: Simulia. 
  45. Thompson, M.R., Dempsey, B.J., Hill, H. and Vogel, J (1987), "Characterizing temperature effects for pavement analysis and design", Transport. Res. Record, 1121. 
  46. Vaziri, M.R., Tavakoli, H. and Bahaaddini, M. (2022), "2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests", Geomech. Eng., 28(2), 117-133. https://doi.org/10.12989/gae.2022.28.2.117. 
  47. Wahhab, H.I.A..A. and Balghunain, F.A. (1994), "Asphalt pavement temperature related to arid Saudi environment", J. Mater. Civil Eng. ASCE, 6(1), 12-15. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:1(1). 
  48. Warren, H. and Dieckman, W.L. (1963), "Numerical computational stresses and strains in multi-layer asphalt pavement system", Internal Report, Chevron Res. Corporation, Richmond, CA. 
  49. Westergaard, H.M. (1926), "Stresses in concrete pavement computed by theoretical analysis", Public Roads, 7(2), 25-35. 
  50. Witczak, M.W. (1972), "Design of full-depth asphalt airfield pavements", Proceedings of the 3rd International Conference on the Structural Design of Asphalt Pavements. 
  51. Yavuzturk, C., Ksaibati, K. and Chiasson, A.D. (2005), "Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a twodimensional transient finite-difference approach", J. Mat. Civil. Eng., 17, 465-475. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(465). 
  52. Yoder, E.J. and Witczak, M.W. (1975), Principles of Pavement Design, 2nd Ed., John Wiley and Sons, Inc. New York. 
  53. Zadehmohamad, M., Luo, N., Abu-Farsakh, M. and Voyiadjis, G. (2022), "Evaluating long-term benefits of geosynthetics in flexible pavements built over weak subgrades by finite element and Mechanistic-Empirical analyses", Geotext. Geomembranes, 50(3), 455-469. https://doi.org/10.1016/j.geotexmem.2022.01.004.