DOI QR코드

DOI QR Code

다중 재실자 대상 실시간 착의량 산출 프로세스 개발

Development of the Estimating Process for the real-time Clothing Insulation of Multiple Occupants

  • Choi, Eun Ji (Dept. of Architecture and Building Science, Chung-Ang University) ;
  • Yun, Ji Young (Dept. of Architecture and Building Science, Chung-Ang University) ;
  • Kim, Nam Hyeon (Dept. of Architecture and Building Science, Chung-Ang University) ;
  • Moon, Jin Woo (Dept. of Architecture and Building Science, Chung-Ang University)
  • 투고 : 2022.12.21
  • 심사 : 2023.01.25
  • 발행 : 2023.02.28

초록

Information on clothing insulation (CLO) worn by individual occupants is essential for comfort-based control in buildings. It is necessary to develop a method for estimating each occupant's real-time actual clothing information in situations with multiple occupants. This study aims to suggest a novel approach to estimate the CLO of multiple occupants in real-time and confirm its practical application with the help of a performance evaluation in a test-bed. A process that combined the person detection model and the CLO estimation model was proposed. Experiments to estimate CLO worn by multiple persons in a test-bed were conducted to train the model and evaluate its performance at each stage of the process. As a result, each model of the process demonstrated an average person detection accuracy of 95% and a CLO estimation accuracy of 91% for six different clothing combinations. Consequently, these experimental findings confirmed the feasibility of estimating a person's clothing insulation in an indoor environment where multiple people exist.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임. 과제번호:2019R1A2C1084145

참고문헌

  1. ASHRAE, ANSI/ASHRAE Standard 55-2020, (2020). Thermal Environmental Conditions For Human Occupancy. Atlanta, GA.
  2. Choi, E. J., Moon, J. W., Han, J. H., & Yoo, Y. (2021a). Development of a Deep Neural Network Model for Estimating Joint Location of Occupant Indoor Activities for Providing Thermal Comfort. Energies, 14(3), 696.
  3. Choi, E. J., Park, B. R., Kim, N. H., & Moon, J. W. (2022a). Evaluation of thermal comfort by PMV-based control applying dynamic clothing insulation. KIEAE Journal, 22, 53-60. https://doi.org/10.12813/kieae.2022.22.1.053
  4. Choi, E. J., Park, B. R., Kim, N. H., & Moon, J. W. (2022b). Effects of thermal comfort-driven control based on real-time clothing insulation estimated using an image-processing model. Building and Environment, 223, 109438.
  5. Choi, H., Na, H., Kim, T., & Kim, T. (2021b). Vision-based estimation of clothing insulation for building control: A case study of residential buildings. Building and Environment, 202, 108036.
  6. Choi, Y. J., Park, B. R., Hyun, J. Y., & Moon, J. W. (2022c). Development of Occupancy Prediction Model and Performance Comparison According to the Recurrent Neural Network Models, Journal of the Architectural Institute of Korea. 38, 10.
  7. De Giuli, V., Da Pos, O., & De Carli, M. (2012). Indoor environmental quality and pupil perception in Italian primary schools. Building and Environment, 56, 335-345. https://doi.org/10.1016/j.buildenv.2012.03.024
  8. Fanger, P.O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press.
  9. Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision. 1440-1448.
  10. Jang, H., & Suh, S. (2013). Analysis of Indoor Thermal Environment and Energy Consumption in Office Building Controlled by PMV. Journal of the Korean Solar Energy Society, 33(4), 15-22. https://doi.org/10.7836/kses.2013.33.4.015
  11. Jocher, G., Nishimura, K., Mineeva, T., & Vilarino, R. (accessed May 2020), YOLOv5, https://ultralytics.com/yolov5.
  12. Jung, W., & Jazizadeh, F. (2019). Comparative assessment of HVAC control strategies using personal thermal comfort and sensitivity models. Building and Environment, 158, 104-119. https://doi.org/10.1016/j.buildenv.2019.04.043
  13. Karyono, K., Abdullah, B. M., Cotgrave, A. J., & Bras, A. (2020). The adaptive thermal comfort review from the 1920s, the present, and the future. Developments in the Built Environment, 4, 100032.
  14. Konarska, M., Soltynski, K., Sudol-Szopinska, I., & Chojnacka, A. (2007). Comparative evaluation of clothing thermal insulation measured on a thermal manikin and on volunteers. Fibres and Textiles in Eastern Europe, 15(2), 73.
  15. Lee, J. H., Kim, Y. K., Kim, K. S., & Kim, S. (2016). Estimating clothing thermal insulation using an infrared camera. Sensors, 16(3), 341.
  16. Lee, K., Choi, H., Kim, H., Kim, D. D., & Kim, T. (2020). Assessment of a real-time prediction method for high clothing thermal insulation using a thermoregulation model and an infrared camera. Atmosphere, 11(1), 106.
  17. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P. (2017). Focal Loss for Dense Object Detection, arXiv:1708.02002
  18. Liu, J., Foged, I. W., & Moeslund, T. B. (2022). Automatic estimation of clothing insulation rate and metabolic rate for dynamic thermal comfort assessment, Pattern Analysis and Applications, 25(3), 619-634. https://doi.org/10.1007/s10044-021-00961-5
  19. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed,  S., Fu, C., & Berg, A. C. (2015). SSD: Single Shot MultiBox Detector, arXiv:1512.02325
  20. Lu, S., Hameen, C. E., & Aziz, A. (2018, January). Dynamic hvac operations with real-time vision-based occupant recognition system. In 2018 ASHRAE Winter Conference, Chicago.
  21. Matsumoto, H., Iwai, Y., & Ishiguro, H. (2011, June). Estimation of Thermal Comfort by Measuring Clo Value without Contact. In MVA (pp. 491-494).
  22. Miura, J., Demura, M., Nishi, K., & Oishi, S. (2020). Thermal comfort measurement using thermal-depth images for robotic monitoring. Pattern Recognition Letters, 137, 108-113.
  23. Pang, Z., Chen, Y., Zhang, J., O'Neill, Z., Cheng, H., & Dong, B. (2021). Quantifying the nationwide HVAC energy savings in large hotels: the role of occupant-centric controls. Journal of Building Performance Simulation, 14(6), 749-769. https://doi.org/10.1007/s12273-020-0690-6
  24. Pang, Z., Zhang, J., Chen, Y., Cheng, H., O'Neill, Z., & Dong, B. (2020). Nationwide Energy Saving Analysis for Office Buildings with Occupant Centric Building Controls. ASHRAE Transactions, 126(2).
  25. Park, B. R., Choi, E. J., Choi, Y. J., & Moon, J. W. (2022). Development an image recognition-based clothing estimation model for comfortable building thermal controls, Journal of the Architectural Institute of Korea. 38, 8.
  26. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.. (2015). You Only Look Once: Unified, Real-Time Object Detection, arXiv:1506.02640
  27. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.
  28. Sung, W. T., & Hsiao, S. J. (2020). The application of thermal comfort control based on Smart House System of IoT. Measurement, 149, 106997.
  29. Wu, J., Li, X., Lin, Y., Yan, Y., & Tu, J. (2020). A PMV-based HVAC control strategy for office rooms subjected to solar radiation. Building and Environment, 177, 106863.
  30. Xie, J., Li, H., Li, C., Zhang, J., & Luo, M. (2020). Review on occupant-centric thermal comfort sensing, predicting, and controlling. Energy and Buildings, 226, 110392.
  31. Yang, T., Bandyopadhyay, A., O'Neill, Z., Wen, J., & Dong, B. (2021). From occupants to occupants: A review of the occupant information understanding for building HVAC occupant-centric control. In Building Simulation. Tsinghua University Press. 1-20.