DOI QR코드

DOI QR Code

Material Properties of Eco-friendly Composite Using Gelatin as an Organic Binder according to the Mix Proposition

젤라틴을 유기물 바인더로 활용한 친환경 복합체의 배합에 따른 재료 특성

  • Park, Jiyoon (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yi, Chongku (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 박지윤 (고려대 건축사회환경공학과) ;
  • 이종구 (고려대 건축사회환경공학과)
  • Received : 2022.12.23
  • Accepted : 2023.02.08
  • Published : 2023.02.28

Abstract

Gelatin is a protein-derived material that is a biological medium and a binder that can exhibit mechanical performance. In previous studies, a new concept of Living Building Material (LBM) was suggested using gelatin as a medium for cyanobacteria, but research on the mechanical performance of LBM according to the gelatin mix proposition was insufficient. In this study, the effect of mix proposition on the mechanical performance of a sand-gelatin solution composite was investigated. As a result, the mechanical performance of it was expressed as the gelatin crosslink formed between sand particles. The flexural or compressive strength ratio of the sand-gelatin composite was higher than that of the cement mortar since the bond strength of the gelatin solution to the mineral substrate exceeded that of the cement paste. The concentration of the gelatin solution had a greater effect on the compressive strength than the solution or sand ratio; in the case of a 20% gelatin solution, the average compressive strength at 28 days of curing was expressed to be up to 7.59MPa. On the contrary, the properties of the fresh-state composite were majorly affected by the gelatin or sand ratio while the flow and setting time tended to increase as the ratio increased.

Keywords

Acknowledgement

이 연구는 2022년 한국연구재단 연구비 지원에 의한 결과의 일부임. 과제번호: NRF-2021R1A2C2009632

References

  1. Damian, F., Harati, M., Schwartzenhauer, J., Van Cauwenberghe, O., & Wettig, S. D. (2021). Challenges of dissolution methods development for soft gelatin capsules. Pharmaceutics, 13(2), 214.
  2. Deiaf, A. (2016). Bonding between aggregates and cement pastes in concrete. J. Civ. Eng. Archit, 10, 353-358.
  3. Halsey, T. C., & Levine, A. J. (1998). How sandcastles fall. Physical Review Letters, 80(14), 3141.
  4. Hayashi, A., & Oh, S.-C. (1983). Gelation of gelatin solution. Agricultural and Biological Chemistry, 47(8), 1711-1716. https://doi.org/10.1271/bbb1961.47.1711
  5. Heveran, C. M., Williams, S. L., Qiu, J., Artier, J., Hubler, M. H., Cook, S. M., Cameron, J. C., & Srubar III, W. V. (2020). Biomineralization and successive regeneration of engineered living building materials. Matter, 2(2), 481-494. https://doi.org/10.1016/j.matt.2019.11.016
  6. Keenan, T. R. (2000). Gelatin. Kirk-Othmer Encyclopedia of Chemical Technology.
  7. Kim, K., Min, D., Park, S., Cho, Y., Jung, Y., Kim, J., Jung, H., & Hwang, S. (1989). Development of sponge-type artificial skin from gelatin. Polymer Degradation and Stability, 13(5), 454-460.
  8. Kudrolli, A. (2008). Sticky sand. Nature materials, 7(3), 174-175. https://doi.org/10.1038/nmat2131
  9. Lee, S. B., Kim, Y. H., Chong, M. S., Hong, S. H., & Lee, Y. M. (2005). Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials, 26(14), 1961-1968. https://doi.org/10.1016/j.biomaterials.2004.06.032
  10. Mason, G., & Clark, W. (1965). Liquid bridges between spheres. Chemical Engineering Science, 20(10), 859-866. https://doi.org/10.1016/0009-2509(65)80082-3
  11. Mo, X., Iwata, H., Matsuda, S., & Ikada, Y. (2000). Soft tissue adhesive composed of modified gelatin and polysaccharides. Journal of Biomaterials Science, Polymer Edition, 11(4), 341-351. https://doi.org/10.1163/156856200743742
  12. Pacheco-Torgal, F., Ivanov, V., Karak, N., & Jonkers, H. (Eds.). (2016). Biopolymers and biotech admixtures for eco-efficient construction materials. Woodhead Publishing.
  13. Pezron, I., Djabourov, M., Bosio, L., & Leblond, J. (1990). X-ray diffraction of gelatin fibers in the dry and swollen states. Journal of Polymer Science Part B: Polymer Physics, 28(10), 1823-1839. https://doi.org/10.1002/polb.1990.090281013
  14. Poppe, J. (1992). Gelatin. In Thickening and gelling agents for food (pp. 98-123). Springer.
  15. Qiu, J., Artier, J., Cook, S., Srubar III, W. V., Cameron, J. C., & Hubler, M. H. (2021). Engineering living building materials for enhanced bacterial viability and mechanical properties. IScience, 24(2), 102083.
  16. Sun, J., Huang, Y., Wang, W., Yu, Z., Wang, A., & Yuan, K. (2008). Application of gelatin as a binder for the sulfur cathode in lithium-sulfur batteries. Electrochimica Acta, 53(24), 7084-7088. https://doi.org/10.1016/j.electacta.2008.05.022
  17. Vandelli, M. A., Rivasi, F., Guerra, P., Forni, F., & Arletti, R. (2001). Gelatin microspheres crosslinked with D, L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. International journal of pharmaceutics, 215(1-2), 175-184. https://doi.org/10.1016/S0378-5173(00)00681-5