DOI QR코드

DOI QR Code

Hydrogen sulfide alleviates hypothyroidism-induced myocardial fibrosis in rats through stimulating autophagy and inhibiting TGF-β1/Smad2 pathway

  • Xiong Song (Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China) ;
  • Liangui Nie (Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China) ;
  • Junrong Long (Department of Cardiology, The People's Hospital of Shuangfeng County) ;
  • Junxiong Zhao (Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China) ;
  • Xing Liu (Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China) ;
  • Liuyang Wang (Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China) ;
  • Da Liu (Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China) ;
  • Sen Wang (Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China) ;
  • Shengquan Liu (Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China) ;
  • Jun Yang (Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China)
  • Received : 2021.08.23
  • Accepted : 2022.01.05
  • Published : 2023.01.01

Abstract

Hypothyroidism alone can lead to myocardial fibrosis and result in heart failure, but traditional hormone replacement therapy does not improve the fibrotic situation. Hydrogen sulfide (H2S), a new gas signaling molecule, possesses anti-inflammatory, antioxidant, and anti-fibrotic capabilities. Whether H2S could improve hypothyroidism-induced myocardial fibrosis are not yet studied. In our study, H2S could decrease collagen deposition in the myocardial tissue of rats caused by hypothyroidism. Furthermore, in hypothyroidism-induced rats, we found that H2S could enhance cystathionine-gamma-lyase (CSE), not cystathionine β-synthase (CBS), protein expressions. Finally, we noticed that H2S could elevate autophagy levels and inhibit the transforming growth factor-β1 (TGF-β1) signal transduction pathway. In conclusion, our experiments not only suggest that H2S could alleviate hypothyroidism-induced myocardial fibrosis by activating autophagy and suppressing TGF-β1/SMAD family member 2 (Smad 2) signal transduction pathway, but also show that it can be used as a complementary treatment to conventional hormone therapy.

Keywords

Acknowledgement

This work was supported by the Scientific Research Fund Project of Hunan Provincial Health Commission (Grant No 20201913), the Natural Science Foundation of Hunan Province (Grant No 2020JJ5505) and National Natural Science Foundation of China (Grant No 81870230).

References

  1. Tang YD, Kuzman JA, Said S, Anderson BE, Wang X, Gerdes AM. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation. 2005;112:3122-3130. https://doi.org/10.1161/CIRCULATIONAHA.105.572883
  2. Udovcic M, Pena RH, Patham B, Tabatabai L, Kansara A. Hypothyroidism and the heart. Methodist Debakey Cardiovasc J. 2017;13:55-59. https://doi.org/10.14797/mdcj-13-2-55
  3. Bano A, Chaker L, Muka T, Mattace-Raso FUS, Bally L, Franco OH, Peeters RP, Razvi S. Thyroid function and the risk of fibrosis of the liver, heart, and lung in humans: a systematic review and metaanalysis. Thyroid. 2020;30:806-820. https://doi.org/10.1089/thy.2019.0572
  4. Espeland T, Lunde IG, Amundsen BH, Gullestad L, Aakhus S. Myocardial fibrosis. Tidsskr Nor Laegeforen. 2018. doi: 10.4045/tidsskr.17.1027.
  5. Hajje G, Saliba Y, Itani T, Moubarak M, Aftimos G, Fares N. Hypothyroidism and its rapid correction alter cardiac remodeling. PLoS One. 2014;9:e109753. https://doi.org/10.1371/journal.pone.0109753
  6. Liu M, Li Y, Liang B, Li Z, Jiang Z, Chu C, Yang J. Hydrogen sulfide attenuates myocardial fibrosis in diabetic rats through the JAK/STAT signaling pathway. Int J Mol Med. 2018;41:1867-1876. https://doi.org/10.3892/ijmm.2018.3419
  7. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069-1075. https://doi.org/10.1038/nature06639
  8. Xin W, Yu Y, Ma Y, Gao Y, Xu Y, Chen L, Wan Q. Thyroid-stimulating hormone stimulation downregulates autophagy and promotes apoptosis in chondrocytes. Endocr J. 2017;64:749-757. https://doi.org/10.1507/endocrj.EJ16-0534
  9. Chen T, Li J, Liu J, Li N, Wang S, Liu H, Zeng M, Zhang Y, Bu P. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Am J Physiol Heart Circ Physiol. 2015;308:H424-H434. https://doi.org/10.1152/ajpheart.00454.2014
  10. Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, Karch J, Molkentin JD. Fibroblastspecific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 2017;127:3770-3783. https://doi.org/10.1172/JCI94753
  11. Xiao T, Luo J, Wu Z, Li F, Zeng O, Yang J. Effects of hydrogen sulfide on myocardial fibrosis and PI3K/AKT1-regulated autophagy in diabetic rats. Mol Med Rep. 2016;13:1765-1773. https://doi.org/10.3892/mmr.2015.4689
  12. Moon S, Kim MJ, Yu JM, Yoo HJ, Park YJ. Subclinical hypothyroidism and the risk of cardiovascular disease and all-cause mortality: a meta-analysis of prospective cohort studies. Thyroid. 2018;28:1101-1110. https://doi.org/10.1089/thy.2017.0414
  13. Baumgartner C, da Costa BR, Collet TH, Feller M, Floriani C, Bauer DC, Cappola AR, Heckbert SR, Ceresini G, Gussekloo J, den Elzen WPJ, Peeters RP, Luben R, Volzke H, Dorr M, Walsh JP, Bremner A, Iacoviello M, Macfarlane P, Heeringa J, et al. Thyroid function within the normal range, subclinical hypothyroidism, and the risk of atrial fibrillation. Circulation. 2017;136:2100-2116. https://doi.org/10.1161/CIRCULATIONAHA.117.028753
  14. Li Y, Liu M, Yi J, Song X, Zheng X, Liu D, Wang S, Chu C, Yang J. Exogenous hydrogen sulfide inhibits apoptosis by regulating endoplasmic reticulum stress-autophagy axis and improves myocardial reconstruction after acute myocardial infarction. Acta Biochim Biophys Sin (Shanghai). 2020;52:1325-1336. https://doi.org/10.1093/abbs/gmaa133
  15. Daliang Z, Lifang Y, Hong F, Lingling Z, Lin W, Dapeng L, Tianshu Z, Weimin L. Netrin-1 plays a role in the effect of moderate exercise on myocardial fibrosis in rats. PLoS One. 2019;14:e0199802. https://doi.org/10.1371/journal.pone.0199802
  16. Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y, Levine B, Hill JA, Wolf SE, Minei JP, Zang QS. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation. 2018;138:2247-2262. https://doi.org/10.1161/circulationaha.117.032821
  17. Eva Sikura K, Combi Z, Potor L, Szerafin T, Hendrik Z, Mehes G, Gergely P, Whiteman M, Beke L, Furtos I, Balla G, Balla J. Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization. J Adv Res. 2020;27:165-176. https://doi.org/10.1016/j.jare.2020.07.005
  18. Ellmers LJ, Templeton EM, Pilbrow AP, Frampton C, Ishii I, Moore PK, Bhatia M, Richards AM, Cameron VA. Hydrogen sulfide treatment improves post-infarct remodeling and long-term cardiac function in CSE knockout and wild-type mice. Int J Mol Sci. 2020;21:4284. https://doi.org/10.3390/ijms21124284
  19. Pan LL, Liu XH, Shen YQ, Wang NZ, Xu J, Wu D, Xiong QH, Deng HY, Huang GY, Zhu YZ. Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. Int J Cardiol. 2013;168:3770-3778. https://doi.org/10.1016/j.ijcard.2013.06.007
  20. Yu XH, Cui LB, Wu K, Zheng XL, Cayabyab FS, Chen ZW, Tang CK. Hydrogen sulfide as a potent cardiovascular protective agent. Clin Chim Acta. 2014;437:78-87. https://doi.org/10.1016/j.cca.2014.07.012
  21. Sciarretta S, Yee D, Nagarajan N, Bianchi F, Saito T, Valenti V, Tong M, Del Re DP, Vecchione C, Schirone L, Forte M, Rubattu S, Shirakabe A, Boppana VS, Volpe M, Frati G, Zhai P, Sadoshima J. Trehalose-induced activation of autophagy improves cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2018;71:1999-2010. https://doi.org/10.1016/j.jacc.2018.02.066
  22. Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH, Kandimalla R. Autophagy in the diabetic heart: a potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev. 2021;68:101338. https://doi.org/10.1016/j.arr.2021.101338
  23. Zhang QY, Jin HF, Chen S, Chen QH, Tang CS, Du JB, Huang YQ. Hydrogen sulfide regulating myocardial structure and function by targeting cardiomyocyte autophagy. Chin Med J (Engl). 2018;131:839-844. https://doi.org/10.4103/0366-6999.228249
  24. Lv S, Yuan P, Dong J, Lu C, Li M, Qu F, Zhu Y, Yuan Z, Zhang J. QiShenYiQi pill improves the reparative myocardial fibrosis by regulating autophagy. J Cell Mol Med. 2020;24:11283-11293. https://doi.org/10.1111/jcmm.15695
  25. Luo LF, Qin LY, Wang JX, Guan P, Wang N, Ji ES. Astragaloside IV attenuates the myocardial injury caused by adriamycin by inhibiting autophagy. Front Pharmacol. 2021;12:669782. https://doi.org/10.3389/fphar.2021.669782
  26. Margariti A, Li H, Chen T, Martin D, Vizcay-Barrena G, Alam S, Karamariti E, Xiao Q, Zampetaki A, Zhang Z, Wang W, Jiang Z, Gao C, Ma B, Chen YG, Cockerill G, Hu Y, Xu Q, Zeng L. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem. 2013;288:859-872. https://doi.org/10.1074/jbc.M112.412783
  27. Maruyama T, Noda NN. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J Antibiot (Tokyo). 2017;71:72-78. https://doi.org/10.1038/ja.2017.104
  28. Luo S, Rubinsztein DC. Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ. 2007;14:1247-1250. https://doi.org/10.1038/sj.cdd.4402149
  29. Danieli A, Martens S. p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy. J Cell Sci. 2018;131:jcs214304. https://doi.org/10.1242/jcs.214304
  30. Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol. 2008;445:77-88. https://doi.org/10.1007/978-1-59745-157-4_4
  31. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3:542-545. https://doi.org/10.4161/auto.4600
  32. Li Y, Liu R, Wu J, Li X. Self-eating: friend or foe? The emerging role of autophagy in fibrotic diseases. Theranostics. 2020;10:7993-8017. https://doi.org/10.7150/thno.47826
  33. Guo Y, Gupte M, Umbarkar P, Singh AP, Sui JY, Force T, Lal H. Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol. 2017;110:109-120. https://doi.org/10.1016/j.yjmcc.2017.07.011
  34. Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L, Wang Y, Wang JA, Xiang M. EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling. Circ Res. 2017;121:617-627. https://doi.org/10.1161/CIRCRESAHA.117.311045
  35. Gao H, Bo Z, Wang Q, Luo L, Zhu H, Ren Y. Salvanic acid B inhibits myocardial fibrosis through regulating TGF-β1/Smad signaling pathway. Biomed Pharmacother. 2019;110:685-691. https://doi.org/10.1016/j.biopha.2018.11.098
  36. Shi YX, Chen Y, Zhu YZ, Huang GY, Moore PK, Huang SH, Yao T, Zhu YC. Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;293:H2093-H2100. https://doi.org/10.1152/ajpheart.00088.2007
  37. Chan EC, Peshavariya HM, Liu GS, Jiang F, Lim SY, Dusting GJ. Nox4 modulates collagen production stimulated by transforming growth factor β1 in vivo and in vitro. Biochem Biophys Res Commun. 2013;430:918-925. https://doi.org/10.1016/j.bbrc.2012.11.138
  38. Xue H, Yuan P, Ni J, Li C, Shao D, Liu J, Shen Y, Wang Z, Zhou L, Zhang W, Huang Y, Yu C, Wang R, Lu L. H2S inhibits hyperglycemia-induced intrarenal renin-angiotensin system activation via attenuation of reactive oxygen species generation. PLoS One. 2013;8:e74366. https://doi.org/10.1371/journal.pone.0074366
  39. Kumar M, Arora P, Sandhir R. Hydrogen sulfide reverses LPS-induced behavioral deficits by suppressing microglial activation and promoting M2 polarization. J Neuroimmune Pharmacol. 2021;16:483-499. https://doi.org/10.1007/s11481-020-09920-z
  40. Yuan P, Xue H, Zhou L, Qu L, Li C, Wang Z, Ni J, Yu C, Yao T, Huang Y, Wang R, Lu L. Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide. Nephrol Dial Transplant. 2011;26:2119-2126. https://doi.org/10.1093/ndt/gfq749
  41. Lu M, Qin Q, Yao J, Sun L, Qin X. Induction of LOX by TGF-β1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life. 2019;71:1729-1739. https://doi.org/10.1002/iub.2112