DOI QR코드

DOI QR Code

Maternal separation in mice leads to anxiety-like/aggressive behavior and increases immunoreactivity for glutamic acid decarboxylase and parvalbumin in the adolescence ventral hippocampus

  • Eu-Gene Kim (Department of Anatomy and Neuroscience, Eulji University School of Medicine) ;
  • Wonseok Chang (Department of Physiology and Biophysics, Eulji University School of Medicine) ;
  • SangYep Shin (Department of Physiology and Biophysics, Eulji University School of Medicine) ;
  • Anjana Silwal Adhikari (Department of Physiology and Biophysics, Eulji University School of Medicine) ;
  • Geun Hee Seol (Department of Basic Nursing Science, Korea University School of Nursing) ;
  • Dae-Yong Song (Department of Anatomy and Neuroscience, Eulji University School of Medicine) ;
  • Sun Seek Min (Department of Physiology and Biophysics, Eulji University School of Medicine)
  • Received : 2022.10.19
  • Accepted : 2022.10.31
  • Published : 2023.01.01

Abstract

It has been reported that stressful events in early life influence behavior in adulthood and are associated with different psychiatric disorders, such as major depression, post-traumatic stress disorder, bipolar disorder, and anxiety disorder. Maternal separation (MS) is a representative animal model for reproducing childhood stress. It is used as an animal model for depression, and has well-known effects, such as increasing anxiety behavior and causing abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis. This study investigated the effect of MS on anxiety or aggression-like behavior and the number of GABAergic neurons in the hippocampus. Mice were separated from their dams for four hours per day for 19 d from postnatal day two. Elevated plus maze (EPM) test, resident-intruder (RI) test, and counted glutamic acid decarboxylase 67 (GAD67) or parvalbumin (PV) positive cells in the hippocampus were executed using immunohistochemistry. The maternal segregation group exhibited increased anxiety and aggression in the EPM test and the RI test. GAD67-positive neurons were increased in the hippocampal regions we observed: dentate gyrus (DG), CA3, CA1, subiculum, presubiculum, and parasubiculum. PV-positive neurons were increased in the DG, CA3, presubiculum, and parasubiculum. Consistent with behavioral changes, corticosterone was increased in the MS group, suggesting that the behavioral changes induced by MS were expressed through the effect on the HPA axis. Altogether, MS alters anxiety and aggression levels, possibly through alteration of cytoarchitecture and output of the ventral hippocampus that induces the dysfunction of the HPA axis.

Keywords

Acknowledgement

Grant sponsor: Grant and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF2021R1A2C1010951, 20151D1a1a01061326, 2019R1F1A1060276, 2021R1F1A1060027).

References

  1. Cirulli F, Francia N, Berry A, Aloe L, Alleva E, Suomi SJ. Early life stress as a risk factor for mental health: role of neurotrophins from rodents to non-human primates. Neurosci Biobehav Rev. 2009;33:573-585. https://doi.org/10.1016/j.neubiorev.2008.09.001
  2. Kikusui T, Takeuchi Y, Mori Y. Early weaning induces anxiety and aggression in adult mice. Physiol Behav. 2004;81:37-42. https://doi.org/10.1016/j.physbeh.2003.12.016
  3. Stone LL, Otten R, Soenens B, Engels RC, Janssens JM. Relations between parental and child separation anxiety: the role of dependency-oriented psychological control. J Child Fam Stud. 2015;24:3192-3199. https://doi.org/10.1007/s10826-015-0122-x
  4. Veenema AH, Neumann ID. Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology. 2009;34:463-467. https://doi.org/10.1016/j.psyneuen.2008.10.017
  5. Ellenbroek BA, van den Kroonenberg PT, Cools AR. The effects of an early stressful life event on sensorimotor gating in adult rats. Schizophr Res. 1998;30:251-260. https://doi.org/10.1016/S0920-9964(97)00149-7
  6. Walker EF, Diforio D. Schizophrenia: a neural diathesis-stress model. Psychol Rev. 1997;104:667-685. https://doi.org/10.1037/0033-295X.104.4.667
  7. Llorente R, O'Shea E, Gutierrez-Lopez MD, Llorente-Berzal A, Colado MI, Viveros MP. Sex-dependent maternal deprivation effects on brain monoamine content in adolescent rats. Neurosci Lett. 2010;479:112-117. https://doi.org/10.1016/j.neulet.2010.05.039
  8. Llorente R, Villa P, Marco EM, Viveros MP. Analyzing the effects of a single episode of neonatal maternal deprivation on metabolite profiles in rat brain: a proton nuclear magnetic resonance spectroscopy study. Neuroscience. 2012;201:12-19 https://doi.org/10.1016/j.neuroscience.2011.11.033
  9. Toth M, Halasz J, Mikics E, Barsy B, Haller J. Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav Neurosci. 2008;122:849-854. https://doi.org/10.1037/0735-7044.122.4.849
  10. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7-19. https://doi.org/10.1016/j.neuron.2009.11.031
  11. Fabricius K, Wortwein G, Pakkenberg B. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct. 2008;212:403-416. https://doi.org/10.1007/s00429-007-0169-6
  12. Hock E, McBride S, Gnezda MT. Maternal separation anxiety: mother-infant separation from the maternal perspective. Child Dev. 1989;60:793-802. https://doi.org/10.1111/j.1467-8624.1989.tb03510.x
  13. Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat. 2015;11:165-175. https://doi.org/10.2147/NDT.S58841
  14. Lye TC, Piguet O, Grayson DA, Creasey H, Ridley LJ, Bennett HP, Broe GA. Hippocampal size and memory function in the ninth and tenth decades of life: the Sydney Older Persons Study. J Neurol Neurosurg Psychiatry. 2004;75:548-554. https://doi.org/10.1136/jnnp.2003.010223
  15. Heun R, Mazanek M, Atzor KR, Tintera J, Gawehn J, Burkart M, Gansicke M, Falkai P, Stoeter P. Amygdala-hippocampal atrophy and memory performance in dementia of Alzheimer type. Dement Geriatr Cogn Disord. 1997;8:329-336. https://doi.org/10.1159/000106651
  16. Lee AC, Buckley MJ, Gaffan D, Emery T, Hodges JR, Graham KS. Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: a double dissociation in dementia. J Neurosci. 2006;26:5198-5203. https://doi.org/10.1523/JNEUROSCI.3157-05.2006
  17. Graham KS, Hodges JR. Differentiating the roles of the hippocampal complex and the neocortex in long-term memory storage: evidence from the study of semantic dementia and Alzheimer's disease. Neuropsychology. 1997;11:77-89. https://doi.org/10.1037//0894-4105.11.1.77
  18. O'Leary OF, Cryan JF. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol Sci. 2014;35:675-687. https://doi.org/10.1016/j.tips.2014.09.011
  19. Goodman AM, Wheelock MD, Harnett NG, Mrug S, Granger DA, Knight DC. The hippocampal response to psychosocial stress varies with salivary uric acid level. Neuroscience. 2016;339:396-401. https://doi.org/10.1016/j.neuroscience.2016.10.002
  20. Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review. Learn Mem. 2015;22:411-416. https://doi.org/10.1101/lm.037291.114
  21. Aust S, Stasch J, Jentschke S, Alkan Hartwig E, Koelsch S, Heuser I, Bajbouj M. Differential effects of early life stress on hippocampus and amygdala volume as a function of emotional abilities. Hippocampus. 2014;24:1094-1101. https://doi.org/10.1002/hipo.22293
  22. Mohlenhoff BS, Chao LL, Buckley ST, Weiner MW, Neylan TC. Are hippocampal size differences in posttraumatic stress disorder mediated by sleep pathology? Alzheimers Dement. 2014;10(3 Suppl):S146-S154. https://doi.org/10.1016/j.jalz.2014.04.016
  23. Syed SA, Nemeroff CB. Early life stress, mood, and anxiety disorders. Chronic Stress (Thousand Oaks). 2017;1:2470547017694461.
  24. Xie H, Claycomb Erwin M, Elhai JD, Wall JT, Tamburrino MB, Brickman KR, Kaminski B, McLean SA, Liberzon I, Wang X. Relationship of hippocampal volumes and posttraumatic stress disorder symptoms over early posttrauma periods. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:968-975. https://doi.org/10.1016/j.bpsc.2017.11.010
  25. Shin LM, Shin PS, Heckers S, Krangel TS, Macklin ML, Orr SP, Lasko N, Segal E, Makris N, Richert K, Levering J, Schacter DL, Alpert NM, Fischman AJ, Pitman RK, Rauch SL. Hippocampal function in posttraumatic stress disorder. Hippocampus. 2004;14:292-300. https://doi.org/10.1002/hipo.10183
  26. Averill CL, Satodiya RM, Scott JC, Wrocklage KM, Schweinsburg B, Averill LA, Akiki TJ, Amoroso T, Southwick SM, Krystal JH, Abdallah CG. Posttraumatic stress disorder and depression symptom severities are differentially associated with hippocampal subfield volume loss in combat veterans. Chronic Stress (Thousand Oaks). 2017;1:2470547017744538. https://doi.org/10.1177/2470547017744538
  27. Jung MW, Wiener SI, McNaughton BL. Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci. 1994;14:7347-7356. https://doi.org/10.1523/jneurosci.14-12-07347.1994
  28. Hock BJ Jr, Bunsey MD. Differential effects of dorsal and ventral hippocampal lesions. J Neurosci. 1998;18:7027-7032. https://doi.org/10.1523/JNEUROSCI.18-17-07027.1998
  29. Royer S, Sirota A, Patel J, Buzsaki G. Distinct representations and theta dynamics in dorsal and ventral hippocampus. J Neurosci. 2010;30:1777-1787. https://doi.org/10.1523/JNEUROSCI.4681-09.2010
  30. Lee AR, Kim JH, Cho E, Kim M, Park M. Dorsal and ventral hippocampus differentiate in functional pathways and differentially associate with neurological disease-related genes during postnatal development. Front Mol Neurosci. 2017;10:331. https://doi.org/10.3389/fnmol.2017.00331
  31. Veenema AH, Blume A, Niederle D, Buwalda B, Neumann ID. Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci. 2006;24:1711-1720. https://doi.org/10.1111/j.1460-9568.2006.05045.x
  32. Veenema AH, Bredewold R, Neumann ID. Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology. 2007;32:437-450. https://doi.org/10.1016/j.psyneuen.2007.02.008
  33. Shiah IS, Yatham LN. GABA function in mood disorders: an update and critical review. Life Sci. 1998;63:1289-1303. https://doi.org/10.1016/S0024-3205(98)00241-0
  34. Kelsom C, Lu W. Development and specification of GABAergic cortical interneurons. Cell Biosci. 2013;3:19. https://doi.org/10.1186/2045-3701-3-19
  35. Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitaryadrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1201-1213. https://doi.org/10.1016/j.pnpbp.2005.08.006
  36. Donato F, Rompani SB, Caroni P. Parvalbumin-expressing basketcell network plasticity induced by experience regulates adult learning. Nature. 2013;504:272-276. https://doi.org/10.1038/nature12866
  37. Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, Abdi A, Baufreton J, Bienvenu TC, Herry C. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature. 2014;505:92-96. https://doi.org/10.1038/nature12755
  38. Klausberger T, Marton LF, O'Neill J, Huck JH, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, Csicsvari J, Somogyi P. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci. 2005;25:9782-9793. https://doi.org/10.1523/JNEUROSCI.3269-05.2005
  39. Wu C, Sun D. GABA receptors in brain development, function, and injury. Metab Brain Dis. 2015;30:367-379. https://doi.org/10.1007/s11011-014-9560-1
  40. Cenquizca LA, Swanson LW. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev. 2007;56:1-26. https://doi.org/10.1016/j.brainresrev.2007.05.002
  41. Loureiro M, Kramar C, Renard J, Rosen LG, Laviolette SR. Cannabinoid transmission in the hippocampus activates nucleus accumbens neurons and modulates reward and aversion-related emotional salience. Biol Psychiatry. 2016;80:216-225. https://doi.org/10.1016/j.biopsych.2015.10.016
  42. Swanson LW. A direct projection from Ammon's horn to prefrontal cortex in the rat. Brain Res. 1981;217:150-154. https://doi.org/10.1016/0006-8993(81)90192-X
  43. Tannenholz L, Jimenez JC, Kheirbek MA. Local and regional heterogeneity underlying hippocampal modulation of cognition and mood. Front Behav Neurosci. 2014;8:147. https://doi.org/10.3389/fnbeh.2014.00147
  44. Chang CH, Gean PW. The ventral hippocampus controls stressprovoked impulsive aggression through the ventromedial hypothalamus in post-weaning social isolation mice. Cell Rep. 2019;28:1195-1205.e3. https://doi.org/10.1016/j.celrep.2019.07.005
  45. Herman JP, Mueller NK, Figueiredo H. Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci. 2004;1018:35-45. https://doi.org/10.1196/annals.1296.004
  46. Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev. 1991;12:118-134. https://doi.org/10.1210/edrv-12-2-118
  47. Shin SY, Han SH, Woo RS, Jang SH, Min SS. Adolescent mice show anxiety- and aggressive-like behavior and the reduction of longterm potentiation in mossy fiber-CA3 synapses after neonatal maternal separation. Neuroscience. 2016;316:221-231. https://doi.org/10.1016/j.neuroscience.2015.12.041
  48. Shin SY, Baek NJ, Han SH, Min SS. Chronic administration of ketamine ameliorates the anxiety- and aggressive-like behavior in adolescent mice induced by neonatal maternal separation. Korean J Physiol Pharmacol. 2019;23:81-87. https://doi.org/10.4196/kjpp.2019.23.1.81
  49. Liu D, Caldji C, Sharma S, Plotsky PM, Meaney MJ. Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. J Neuroendocrinol. 2000;12:5-12. https://doi.org/10.1046/j.1365-2826.2000.00422.x
  50. Andersen SL, Teicher MH. Delayed effects of early stress on hippocampal development. Neuropsychopharmacology. 2004;29:1988-1993. https://doi.org/10.1038/sj.npp.1300528
  51. Borel C, Welti DH, Fernandez I, Colmenares M. Dicranin, an antimicrobial and 15-lipoxygenase inhibitor from the moss Dicranum scoparium. J Nat Prod. 1993;56:1071-1077. https://doi.org/10.1021/np50097a01
  52. Li A, Zhang RX, Wang Y, Zhang H, Ren K, Berman BM, Tan M, Lao L. Corticosterone mediates electroacupuncture-produced antiedema in a rat model of inflammation. BMC Complement Altern Med. 2007;7:27. https://doi.org/10.1186/1472-6882-7-27
  53. Goymann W, Mostl E, Gwinner E. Corticosterone metabolites can be measured noninvasively in excreta of European Stonechats (Saxicola torquata rubicola). The Auk. 2002;119:1167-1173. https://doi.org/10.1642/0004-8038(2002)119[1167:CMCBMN]2.0.CO;2
  54. Millspaugh JJ, Washburn BE, Milanick MA, Slotow R, van Dyk G. Effects of heat and chemical treatments on fecal glucocorticoid measurements: implications for sample transport. Wildlife Soc Bull. 2003;31:399-406.
  55. Vazquez-Palacios G, Retana-Marquez S, Bonilla-Jaime H, Velazquez-Moctezuma J. Further definition of the effect of corticosterone on the sleep-wake pattern in the male rat. Pharmacol Biochem Behav. 2001;70:305-310. https://doi.org/10.1016/S0091-3057(01)00620-7
  56. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Amsterdam: Elsevier Science; 2013.
  57. Witter MP, Amaral DG. Hippocampal formation. In: Paxinos G, editor. The rat nervous system. Amsterdam: Elsevier Inc.; 2004. p.635-704.
  58. Lajud N, Torner L. Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators. Front Mol Neurosci. 2015;8:3. https://doi.org/10.3389/fnmol.2015.00003
  59. Litvin Y, Tovote P, Pentkowski NS, Zeyda T, King LB, Vasconcellos AJ, Dunlap C, Spiess J, Blanchard DC, Blanchard RJ. Maternal separation modulates short-term behavioral and physiological indices of the stress response. Horm Behav. 2010;58:241-249. https://doi.org/10.1016/j.yhbeh.2010.03.010
  60. He T, Guo C, Wang C, Hu C, Chen H. Effect of early life stress on anxiety and depressive behaviors in adolescent mice. Brain Behav. 2020;10:e01526. https://doi.org/10.1002/brb3.1526
  61. Ennaceur A. Open space anxiety test in rodents: the elevated platform with steep slopes. Methods Mol Biol. 2012;829:177-191. https://doi.org/10.1007/978-1-61779-458-2_11
  62. Koolhaas JM, Coppens CM, de Boer SF, Buwalda B, Meerlo P, Timmermans PJ. The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp. 2013;(77):e4367.
  63. Kikusui T, Mori Y. Behavioural and neurochemical consequences of early weaning in rodents. J Neuroendocrinol. 2009;21:427-431. https://doi.org/10.1111/j.1365-2826.2009.01837.x
  64. Ito A, Kikusui T, Takeuchi Y, Mori Y. Effects of early weaning on anxiety and autonomic responses to stress in rats. Behav Brain Res. 2006;171:87-93. https://doi.org/10.1016/j.bbr.2006.03.023
  65. Millstein RA, Holmes A. Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains. Neurosci Biobehav Rev. 2007;31:3-17. https://doi.org/10.1016/j.neubiorev.2006.05.003
  66. Vetulani J. Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacol Rep. 2013;65:1451-1461. https://doi.org/10.1016/S1734-1140(13)71505-6
  67. Bian Y, Yang L, Wang Z, Wang Q, Zeng L, Xu G. Repeated threehour maternal separation induces depression-like behavior and affects the expression of hippocampal plasticity-related proteins in C57BL/6N mice. Neural Plast. 2015;2015:627837. https://doi.org/10.1155/2015/627837
  68. Zheng Y, He J, Guo L, Yao L, Zheng X, Yang Z, Xia Y, Wu X, Su Y, Xu N, Chen Y. Transcriptome analysis on maternal separation rats with depression-related manifestations ameliorated by electroacupuncture. Front Neurosci. 2019;13:314. https://doi.org/10.3389/fnins.2019.00314
  69. Ziburkus J, Cressman JR, Schiff SJ. Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events. J Neurophysiol. 2013;109:1296-1306. https://doi.org/10.1152/jn.00232.2012
  70. Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med. 2015;15:146-167. https://doi.org/10.2174/1566524015666150303003028
  71. Bi D, Wen L, Wu Z, Shen Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. Alzheimers Dement. 2020;16:1312-1329. https://doi.org/10.1002/alz.12088
  72. Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015;87:684-698. https://doi.org/10.1016/j.neuron.2015.07.033
  73. Ruden JB, Dugan LL, Konradi C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology. 2021;46:279-287. https://doi.org/10.1038/s41386-020-0778-9
  74. Orsini CA, Kim JH, Knapska E, Maren S. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J Neurosci. 2011;31:17269-17277. https://doi.org/10.1523/JNEUROSCI.4095-11.2011
  75. Santos M, D'Amico D, Spadoni O, Amador-Arjona A, Stork O, Dierssen M. Hippocampal hyperexcitability underlies enhanced fear memories in TgNTRK3, a panic disorder mouse model. J Neurosci. 2013;33:15259-15271. https://doi.org/10.1523/JNEUROSCI.2161-13.2013
  76. Mahmoodkhani M, Ghasemi M, Derafshpour L, Amini M, Mehranfard N. Long-term decreases in the expression of calcineurin and GABAA receptors induced by early maternal separation are associated with increased anxiety-like behavior in adult male rats. Dev Neurosci. 2020;42:135-144. https://doi.org/10.1159/000512221
  77. Herman JP, Mueller NK. Role of the ventral subiculum in stress integration. Behav Brain Res. 2006;174:215-224. https://doi.org/10.1016/j.bbr.2006.05.035
  78. Dedovic K, Duchesne A, Andrews J, Engert V, Pruessner JC. The brain and the stress axis: the neural correlates of cortisol regulation in response to stress. Neuroimage. 2009;47:864-871. https://doi.org/10.1016/j.neuroimage.2009.05.074
  79. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, Richards BA, Kim JC. Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology. 2017;42:1715-1728. https://doi.org/10.1038/npp.2017.56
  80. Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK, Wright MA, Zweifel L, Paninski L, Hen R, Kheirbek MA. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron. 2018;97:670-683.e6. https://doi.org/10.1016/j.neuron.2018.01.016
  81. Bernier BE, Lacagnina AF, Ayoub A, Shue F, Zemelman BV, Krasne FB, Drew MR. Dentate gyrus contributes to retrieval as well as encoding: evidence from context fear conditioning, recall, and extinction. J Neurosci. 2017;37:6359-6371. https://doi.org/10.1523/JNEUROSCI.3029-16.2017
  82. Karolewicz B, Maciag D, O'Dwyer G, Stockmeier CA, Feyissa AM, Rajkowska G. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol. 2010;13:411-420. https://doi.org/10.1017/S1461145709990587
  83. Wang J, Tang J, Liang X, Luo Y, Zhu P, Li Y, Xiao K, Jiang L, Yang H, Xie Y, Zhang L, Deng Y, Li J, Tang Y. Hippocampal PGC-1αmediated positive effects on parvalbumin interneurons are required for the antidepressant effects of running exercise. Transl Psychiatry. 2021;11:222. https://doi.org/10.1038/s41398-021-01339-1
  84. Czeh B, Varga ZK, Henningsen K, Kovacs GL, Miseta A, Wiborg O. Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. Hippocampus. 2015;25:393-405. https://doi.org/10.1002/hipo.22382
  85. Csabai D, Seress L, Varga Z, Abraham H, Miseta A, Wiborg O, Czeh B. Electron microscopic analysis of hippocampal axo-somatic synapses in a chronic stress model for depression. Hippocampus. 2017;27:17-27. https://doi.org/10.1002/hipo.22650
  86. Joels M, Karst H, Krugers HJ, Lucassen PJ. Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol. 2007;28:72-96. https://doi.org/10.1016/j.yfrne.2007.04.001
  87. Travis S, Coupland NJ, Silversone PH, Huang Y, Fujiwara E, Carter R, Seres P, Malykhin NV. Dentate gyrus volume and memory performance in major depressive disorder. J Affect Disord. 2015;172:159-164. https://doi.org/10.1016/j.jad.2014.09.048
  88. Deller T, Haas CA, Deissenrieder K, Del Turco D, Coulin C, Gebhardt C, Drakew A, Schwarz K, Mundel P, Frotscher M. Laminar distribution of synaptopodin in normal and reeler mouse brain depends on the position of spine-bearing neurons. J Comp Neurol. 2002;453:33-44. https://doi.org/10.1002/cne.10362
  89. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397-409. https://doi.org/10.1038/nrn2647
  90. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8:383-395. https://doi.org/10.31887/DCNS.2006.8.4/ssmith
  91. Stephens MA, Wand G. Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res. 2012;34:468-483.
  92. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000;57:925-935. https://doi.org/10.1001/archpsyc.57.10.925
  93. Weeden CS, Roberts JM, Kamm AM, Kesner RP. The role of the ventral dentate gyrus in anxiety-based behaviors. Neurobiol Learn Mem. 2015;118:143-149. https://doi.org/10.1016/j.nlm.2014.12.002
  94. Lesuis SL, Brosens N, Immerzeel N, van der Loo RJ, Mitric M, Bielefeld P, Fitzsimons CP, Lucassen PJ, Kushner SA, van den Oever MC, Krugers HJ. Glucocorticoids promote fear generalization by increasing the size of a dentate gyrus engram cell population. Biol Psychiatry. 2021;90:494-504. https://doi.org/10.1016/j.biopsych.2021.04.010
  95. Zetzsche T, Preuss UW, Frodl T, Schmitt G, Seifert D, Munchhausen E, Tabrizi S, Leinsinger G, Born C, Reiser M, Moller HJ, Meisenzahl EM. Hippocampal volume reduction and history of aggressive behaviour in patients with borderline personality disorder. Psychiatry Res. 2007;154:157-170. https://doi.org/10.1016/j.pscychresns.2006.05.010
  96. Davies CH, Starkey SJ, Pozza MF, Collingridge GL. GABA autoreceptors regulate the induction of LTP. Nature. 1991;349:609-611. https://doi.org/10.1038/349609a0
  97. Lussier SJ, Stevens HE. Delays in GABAergic interneuron development and behavioral inhibition after prenatal stress. Dev Neurobiol. 2016;76:1078-1091 https://doi.org/10.1002/dneu.22376