DOI QR코드

DOI QR Code

Development of Real-Time Heating Temperature Setting Process for Energy Saving of a Building with Simultaneous Heating and Cooling Systems

동시 냉난방 시스템 적용 건물의 에너지 절감을 위한 실시간 난방 온도 설정 프로세스 개발

  • Lee, Yu-Jin (Dept. of Architectural Engineering, Kunsan National University) ;
  • Lee, Seok-Hyun (Dept. of Architectural Engineering, Kunsan National University) ;
  • Shin, Dae-Uk (Dept. of Architectural Engineering, Kunsan National University)
  • Received : 2023.01.30
  • Accepted : 2023.04.03
  • Published : 2023.04.30

Abstract

Simultaneous Heating and Cooling systems are advantageous when heating and cooling loads occur simultaneously in a building; the usage of auxiliary heat sources is inevitable because the occurrence of the loads may vary. Since the auxiliary heat source has a lower COP than the simultaneous heating and cooling systems, more energy is required when removing the same amount of load. To reduce energy, the usage of simultaneous heating and cooling systems and auxiliary heat sources must be increased and decreased, respectively. In this study, a process that can determine the heating set temperature in real-time was proposed to increase the usage of simultaneous heating and cooling systems for buildings where the cooling load exceeds the heating load. This process determines the temperature for the next point using the heating temperature of the previous point and the energy inside the tank. These results confirmed that energy can be reduced while maintaining a more pleasant temperature.

Keywords

Acknowledgement

이 논문은 2022년도 추계학술발표대회 논문집에 게재된 내용을 수정보완하여 작성한 것임. 또한 2020년도 과학기술정보통신부의 연구비 지원에 의한 결과의 일부이며(과제번호:2020R1G1A1099594), 2022년도 과학기술정보통신부의 연구비 지원에 의한 결과의 일부임(과제번호: 2022R1F1A1063065)

References

  1. Ahn, B. C., & Hong, S. S. (2016). The effects of prediction and reset control of outdoor air temperature on energy consumption for central heating system. Journal of the Korean Society for Geothermal and Hydrothermal Energy, 12(4), 8-14.
  2. Alfano, F. R. D. A., Palella, B. I., & Riccio, G. (2011). The role of measurement accuracy on the thermal environment assessment by means of PMV index. Building and Environment, 46(7), 1361-1369. https://doi.org/10.1016/j.buildenv.2011.01.001
  3. ANSI/ASHRAE. (2020). Thermal environmental conditions for human occupancy, Standard 55-2020
  4. ASHRAE (2019). ASHRAE handbook-HVAC applications.
  5. Byrne, P., Miriel, J., & Lenat, Y. (2011). Experimental study of an air-source heat pump for simultaneous heating and cooling - Part 1: Basic concepts and performance verification. Applied Energy, 88(5), 1841-1847. https://doi.org/10.1016/j.apenergy.2010.12.009
  6. Byrne, P., Ghoubali, R. & Diaby, A. T. (2018). Heat pumps for simultaneous heating and cooling, hal-01990466
  7. Cho, J. K., Hong, M. H., Jeong, C. S., & Kim, B. S. (2006). A study on a heat-load of IT equipments for the thermal environment control in the data center. In Proceedings of the SAREK Conference, 938-943. The Society of Air-Conditioning and Refrigerating Engineers of Korea.
  8. Dharkar, S., Kurtulus, O., Groll, E. A., & Yazawa, K. (2014). Analysis of a data center using liquid-liquid CO2 heat pump for simultaneous cooling and heating. International Refrigeration and Air Conditioning Conference. Paper 1419.
  9. Du, X., Li, B., Liu, H., Yang, D., Yu, W., Liao, J., & Xia, K. (2014). The response of human thermal sensation and its prediction to temperature step-change (cool-neutral-cool). PloS one, 9(8), e104320.
  10. ISO 7730 (2005). Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
  11. Kim, D. J., Kang, B. H., & Chang, Y. S. (2018). A performance analysis on a heat pump with thermal storage adopting load response control method. Korean Journal of Air-Conditioning and Refrigeration Engineering, 30(3), 130-142. https://doi.org/10.6110/KJACR.2018.30.3.130
  12. Klein, S., Beckman, W., Mitchel, J., Duffie, J., Duffie, N., & Freeman, T. (2012). TRNSYS Manual, Volume 4, Mathematical Reference
  13. Liu, H., Liao, J., Yang, D., Du, X., Hu, P., Yang, Y., & Li, B. (2014). The response of human thermal perception and skin temperature to step-change transient thermal environments. Building and environment, 73, 232-238. https://doi.org/10.1016/j.buildenv.2013.12.007
  14. MOLIT (2022). Energy-saving design standard for buildings.
  15. Repository of free climate data for building performance simulation [Website]. (2023, Apr 13), https://www.climate.onebuilding.org/WMO_Region_2_Asia/KOR_South_Korea/index.html
  16. Shin, D. U., Leigh, T. H., Joe, G. S., Kim, M. G., Yeo, M. S., & Kim, K. W. (2015). Energy performance of balanced heat recovery systems with load-balancing. Energy Procedia, 78, 2445-2451 https://doi.org/10.1016/j.egypro.2015.11.227
  17. Shin, D. U. (2016). Principle for Load Removal of the Simultaneous Heating and Cooling System with Thermal Storage Tanks, Ph. D. Dissertation, Seoul National University.
  18. Shin, D. U., Ryu, S. R., & Kim, K. W. (2019). Simultaneous heating and cooling system with thermal storage tanks considering energy efficiency and operation method of the system, Energy and Buildings, 205, 109518.
  19. Shin, D. U., & Jeong, C. H. (2021). Energy savings of simultaneous heating and cooling system according to indoor set temperature changes in the comfort range. Energies, 14(22), 7691.