DOI QR코드

DOI QR Code

Evaluation of Crack Behavior Using Dynamic Discoloration Sensor of Fiber-reinforced Cement Composites After Freeze-thaw

동결융해 작용을 받은 섬유보강 시멘트 복합체의 역학변색 센서 활용 균열 거동 평가

  • Pyeon, Su-Jeong (Dept. of Architectural Engineering, Chungnam National University) ;
  • Kim, Gyu-Yong (Dept. of Architectural Engineering, Chungnam National University) ;
  • Choi, Byung-Cheol (Dept. of Architectural Engineering, Chungnam National University) ;
  • Kim, Moon-Kyu (Dept. of Architectural Engineering, Chungnam National University) ;
  • Eu, Ha-Min (Dept. of Architectural Engineering, Chungnam National University) ;
  • Nam, Jeong-Soo (Dept. of Architectural Engineering, Chungnam National University)
  • 편수정 (충남대학교 건축공학과) ;
  • 김규용 (충남대학교 건축공학과) ;
  • 최병철 (충남대학교 건축공학과) ;
  • 김문규 (충남대학교 건축공학과) ;
  • 유하민 (충남대학교 건축공학과) ;
  • 남정수 (충남대학교 건축공학과)
  • Received : 2023.02.08
  • Accepted : 2023.03.30
  • Published : 2023.04.30

Abstract

This study aims to evaluate the deformation and damage of cement composites using a dynamic discoloration sensor that changes color when mechanical and physical stresses are applied. The sensor operates without power and can monitor the status of a structure in real-time, reducing the need for various factors required for a structural health assessment. The experimental results showed that the sensor changes color in response to the deformation of the specimen and can monitor the crack propagation in real-time. The sensor also recognizes the color change in the freeze-thaw environment. However, to improve the accuracy of monitoring, it is necessary to improve the reliability of the model and the experimental environment based on data collected under various conditions, such as the attachment location and surface of the sensor.

Keywords

Acknowledgement

본 연구는 2022학년도 충남대학교 4단계 BK21 대학원혁신사업의 지원을 받아 수행된 연구임. 본 연구는 2020년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임.(No. 2020R1C1C101403812).

References

  1. Bae, G., Seo, M., Lee, S., Bae, D., & Lee, M. (2021). Angle-Insensitive Fabry-Perot Mechanochromic Sensor for Real-Time Structural Health Monitoring. Advanced Materials Technologies, 6(8), 2100118. 
  2. Bae, G., Seo, M., Lee, S., Bae, D., & Lee, M. (2021). Colorimetric Detection of Mechanical Deformation in Metals using Thin-Film Mechanochromic Sensor. Advanced Materials Technologies, 6(10), 2100479. 
  3. Basharat, A., Catbas, N., & Shah, M. (2005, March). A framework for intelligent sensor network with video camera for structural health monitoring of bridges. In Third IEEE International Conference on Pervasive Computing and Communications Workshops (pp. 385-389). IEEE. 
  4. Choe, G., Kim, H., Jeon, J., Lee, M., Pyeon, S., & Nam, J. (2023). A Study on the Application Method of Mechanochromic Sensor for Crack Monitoring in Buildings. Journal of The Korea Institute of Building Construction, 23(1), 69-79. 
  5. Chouikhi, S., El Korbi, I., Ghamri-Doudane, Y., & Saidane, L. A. (2015). A survey on fault tolerance in small and large scale wireless sensor networks. Computer Communications, 69, 22-37. 
  6. Giordano, P. F., Quqa, S., & Limongelli, M. P. (2023). The value of monitoring a structural health monitoring system. Structural Safety, 100, 102280. 
  7. Kullaa, J. (2011). Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring. Mechanical Systems and Signal Processing, 25(8), 2976-2989.  https://doi.org/10.1016/j.ymssp.2011.05.017
  8. Moon, K., Kim, J., Park, J., & Kim, J. (2015). Disaster Management of High-rise Building usingStructural Health Monitoring Systems. Journal of the Korean Association for Spatial Structures, 15(1), 22-29. 
  9. Pyeon, S., Choe, G., Kim, H., Kim, G., & Nam, J. (2021). An Experimental Study on the Applicability of Mechanochromic Sensors for Monitoring Tensile Strain of Concrete Materials. Journal of the Korea Institute of Building Construction, 21(6), 573-581. 
  10. UIF(University Industry Foundation), Yonsei University. (2020). Patent No. 10-2020-0166492. Seoul: Korean Intellectual Property Office.
  11. Yang, Y., & Nagarajaiah, S. (2016). Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure. Mechanical Systems and Signal Processing, 74, 165-182.  https://doi.org/10.1016/j.ymssp.2015.11.009
  12. Yi, T. H., Huang, H. B., & Li, H. N. (2017). Development of sensor validation methodologies for structural health monitoring: A comprehensive review. Measurement, 109, 200-214.  https://doi.org/10.1016/j.measurement.2017.05.064
  13. Yildirim, G., Sarwary, M. H., Al-Dahawi, A., Ozturk, O., Anil, O., & Sahmaran, M. (2018). Piezoresistive behavior of CF-and CNT-based reinforced concrete beams subjected to static flexural loading: Shear failure investigation. Construction and Building Materials, 168, 266-279.  https://doi.org/10.1016/j.conbuildmat.2018.02.124