DOI QR코드

DOI QR Code

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed (Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Majid Yousefikhoshbakht (Department of Mathematics, Faculty of Sciences, Bu-Ali Sina University) ;
  • Abdul Khader Jilani Saudagar (Information Systems Department, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Shakir Khan (College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU))
  • 투고 : 2023.02.05
  • 발행 : 2023.02.28

초록

The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

키워드

과제정보

The authors extend their appreciation to the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, for funding this research work through Grant No. (221412020).

참고문헌

  1. Sedighpour, M., Ahmadi, V., Yousefikhoshbakht, M., Didehvar, F., and Rahmati, F. (2014). Solving the open vehicle routing problem by a hybrid ant colony optimization, Kuwait Journal of Science, 41(3), 139-162.
  2. Yousefikhoshbakht, M., Didehvar, F., and Rahmati, F. (2015). A mixed integer programming formulation for the heterogeneous fixed fleet open vehicle routing problem, Journal of optimization in Industrial Engineering, 8(18), 37-46.
  3. Ahmed, Z.H. (2018). A hybrid algorithm combining lexisearch and genetic algorithms for the quadratic assignment problem, Cogent Engineering, 5(1), 1423743. doi: 10.1080/23311916.2018.1423743.
  4. Germs, R., Goldengorin, B., and Turkensteen, M. (2012). Lower tolerance-based branch and bound algorithms for the ATSP, Computers and Operations Research, 39(2), 291-298. https://doi.org/10.1016/j.cor.2011.04.003
  5. Cordeau, J. F., Dell'Amico, M., Iori, M. (2010). Branch-and-cut for the pickup and delivery traveling salesman problem with FIFO loading, Computers and Operations Research, 37(5), 970-980. https://doi.org/10.1016/j.cor.2009.08.003
  6. Ahmed, Z.H. (2011). A data-guided lexisearch algorithm for the asymmetric traveling salesman problem, Mathematical Problems in Engineering. 2011, 750968. doi: 10.1155/2011/750968.
  7. Mak, V., and Boland, N. (2007). Polyhedral results and exact algorithms for the asymmetric travelling salesman problem with replenishment arcs, Discrete Applied Mathematics, 155(16), 2093-2110. doi: 10.1016/j.dam.2007.05.014.
  8. Yousefikhoshbakht, M., Dolatnejad, A., Didehvar, F., and Rahmati, F. (2016). A modified column generation to solve the heterogeneous fixed fleet open vehicle routing problem, Journal of Engineering, 2016, 5692792. doi: 10.1155/2016/5692792.
  9. Ahmed, Z.H. (2010). Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator. International Journal of Biometrics and Bioinformatics, 6(3), 96-105.
  10. Niu, Y., Yang, Z., Chen, P., and Xiao, J. (2018). A hybrid tabu search algorithm for a real-world open vehicle routing problem involving fuel consumption constraints, Complexity, 2018, 5754908, 12 pages. doi: 10.1155/2018/5754908.
  11. Ahmed, Z.H. (2014). A Simple genetic algorithm using sequential constructive crossover for the quadratic assignment problem, Journal of Scientific and Industrial Research, 73(12), 763-766. http://nopr.niscpr.res.in/handle/123456789/30018.
  12. Liu, Y.-H. (2008). Diversified local search strategy under scatter search framework for the probabilistic traveling salesman problem. European Journal of Operational Research, 191(2), 332-346. doi: 10.1016/j.ejor.2007.08.023.
  13. Yousefikhoshbakht, M., Malekzadeh, N., and Sedighpour, M. (2016). Solving the traveling salesman problem based on the genetic reactive bone route algorithm whit ant colony system. International Journal of Production Management and Engineering, 4(2), 65-73. doi:10.4995/ijpme.2016.4618.
  14. Marinakis, Y., Marinaki, M., and Dounias, G. (2011). Honey bees mating optimization algorithm for the Euclidean traveling salesman problem. Information Sciences, 181(20), 4684-4698. doi: 10.1016/j.ins.2010.06.032.
  15. Wang, Y.-T., Li, J.-Q., Gao, K.-Z., and Pan, Q.-K. (2011). Memetic algorithm based on improved Inver-over operator and Lin-Kernighan local search for the Euclidean traveling salesman problem. Computers and Mathematics with Applications, 62(7), 2743-2754. doi: 10.1016/j.camwa.2011.06.063.
  16. Cochrane, E.M., and Beasley J.E. (2003). The co-adaptive neural network approach to the Euclidean travelling salesman problem, Neural Networks, 16(10), 1499-1525. doi: 10.1016/S0893-6080(03)00056-X.
  17. Ahmed, Z.H., Hameed, A.S., and Mutar, M.L. (2022). Hybrid genetic algorithms for the asymmetric distance-constrained vehicle routing problem, Mathematical Problems in Engineering, 2022, 2435002, 20 pages. doi: 10.1155/2022/2435002.
  18. Hameed, A.S., Mutar, M.L., Alrikabi, H.M.B, Ahmed, Z.H., Abdul-Razaq, A.A., and Nasser, H.K. (2021). A hybrid method integrating a discrete differential evolution algorithm with tabu search algorithm for the quadratic assignment problem: a new approach for locating hospital departments, Mathematical Problems in Engineering, 2021, 6653056, 21 pages. doi: 10.1155/2021/6653056.
  19. Ahmed, Z.H., and Yousefikhoshbakht, M. (2023). A hybrid algorithm for the heterogeneous fixed fleet open vehicle routing problem with time windows, Symmetry, 15(2), 486.
  20. Al-Furhud, M.A., and Ahmed, Z.H. (2020). Experimental study of a hybrid genetic algorithm for the multiple travelling salesman problem, Mathematical Problems in Engineering, 2020, 3431420, 13 pages. doi: 10.1155/2020/3431420.
  21. Yousefikhoshbakht, M. (2021). Solving the traveling salesman problem: a modified metaheuristic algorithm. Complexity, 2021, 6668345, 13 pages. doi: 10.1155/2021/6668345.
  22. Ahmed, Z. H. (2013). A hybrid genetic algorithm for the bottleneck traveling salesman problem, ACM Transactions on Embedded Computing Systems (TECS), 12(1), 1-10. doi: 10.1145/2406336.2406345.
  23. Baltierra, S., Valdebenito, J., and Mora, M. (2022). A proposal of edge detection in images with multiplicative noise using the ant colony system algorithm, Engineering Applications of Artificial Intelligence, 110, 104715. doi: 10.1016/j.engappai.2022.104715.
  24. Dorigo, M., and Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation, 1(1), 53-66. https://doi.org/10.1109/4235.585892
  25. Wong, L.-P., Low, M.Y.H., and Chong, C.S. (2008). A bee colony optimization algorithm for traveling salesman problem, 2008 Second Asia International Conference on Modelling & Simulation (AMS), 818-823. doi: 10.1109/AMS.2008.27.
  26. Zhong, W., Zhang, J., and Chen, W. (2007). A novel discrete particle swarm optimization to solve traveling salesman problem, 2007 IEEE Congress on Evolutionary Computation, 3283-3287. doi: 10.1109/CEC.2007.4424894.
  27. Yousefikhoshbakht, M., and Darani, N.M. (2019). A combined metaheuristic algorithm for the vehicle routing problem and its open version, Journal of AI and Data Mining, 7(1), 169-179. doi: 10.22044/jadm.2018.7116.1840.
  28. Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2001). A new heuristic optimization algorithm: harmony search, Simulation, 76(2), 60-68. doi: 10.1177/003754970107600201.
  29. Alipour, M.M., and Razavi, S.N. (2015). A new multiagent reinforcement learning algorithm to solve the symmetric traveling salesman problem, Multiagent and Grid Systems, 11(2), 107-119. doi: 10.3233/MGS-150232.
  30. Masutti, T.A.S., and de Castro, L.N. (2009). A self-organizing neural network using ideas from the immune system to solve the traveling salesman problem, Information Sciences, 179(10), 1454-1468. doi: 10.1016/j.ins.2008.12.016.
  31. Tuba, M., and Jovanovic, R. (2013). Improved ACO algorithm with pheromone correction strategy for the traveling salesman problem, International Journal of Computers, Communications and Control, 8(3), 477-485. https://doi.org/10.15837/ijccc.2013.3.7
  32. Wu, C., Liang, Y., Lee, H.P., and Lu, C. (2004). Generalized chromosome genetic algorithm for generalized traveling salesman problems and its applications for machining, Physical Review E, 70(1), 016701. doi: 10.1103/PhysRevE.70.016701.
  33. Jaradat G.M. (2018). Hybrid elitist-ant system for a symmetric traveling salesman problem: case of Jordan, Neural Computing and Applications, 29, 565-578. doi: 10.1007/s00521-016-2469-3.
  34. Ahmed, Z.H., Al-Otaibi, N., Al-Tameem, A., and Saudagar, A.K.J. (2023). Genetic crossover operators for the capacitated vehicle routing problem, Computers, Materials & Continua, 74(1), 1575-1605. doi: 10.32604/cmc.2023.031325.
  35. Ahmed, Z.H., and Yousefikhoshbakht, M. (2023). An improved tabu search algorithm for solving heterogeneous fixed fleet open vehicle routing problem with time windows, Alexandria Engineering Journal, 64(1), 349-363. doi: 10.1016/j.aej.2022.09.008.