DOI QR코드

DOI QR Code

Numerical assessment of rectangular one- and two-way RC slabs strengthened with CFRP under impact loads

  • Mohamed Emara (Structural Engineering Department, Faculty of Engineering, Zagazig University) ;
  • Ahmed Hamoda (Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University) ;
  • Jong Wan Hu (Department of Civil and Environmental Engineering, Incheon National University)
  • Received : 2021.12.19
  • Accepted : 2022.11.17
  • Published : 2023.03.25

Abstract

In this study, the flexural behaviors of one- and two-way reinforced concrete (RC) slabs strengthened with carbon-fiber-reinforced polymer (CFRP) strips under impact loads were investigated. The flexural strengthening of RC slabs under simulated static monotonic loads has been comprehensively studied. However, the flexural behavior of RC slabs strengthened with CFRP strips has not been investigated extensively, particularly those conducted numerically. Nonlinear three-dimensional finite element models were developed, executed, and verified against previous experimental results, producing satisfactory models with approximately 4% error. The models were extended to a parametric study, considering three geometric parameters: the slab rectangularity ratio, CFRP strip width, and CFRP strip configuration. Finally, the main results were used to derive a new formula for predicting the total deflection of RC slabs strengthened with CFRP strips under impact loads with an error of approximately 10%. The proposed equation reflected the slab rectangularity, CFRP strip width, equivalent slab stiffness, and dropped weight. Results indicated that the use of CFRP strips enhanced the overall impact performance, the wider the CFRP width, the better the enhancement. Moreover, the application of diagonally oriented CFRP strips diminished the cracking zone compared to straight strips. Additionally, the diagonal orientation of CFRP strips was more efficient for two-way slabs while the vertical orientation was found to be better in the case of one-way slabs.

Keywords

Acknowledgement

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21CFRP-C163381-01).

References

  1. Abbas, H., Gupta, N.K. and Alam, M. (2004), "Nonlinear response of concrete beams and plates under impact loading", Int. J. Impact Eng., 30(8-9), 1039-1053. https://doi.org/10.1016/j.ijimpeng.2004.06.011.
  2. Anil, O., Durucan, C., Erdem, R.T. and Yorgancilar, M.A. (2016), "Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading", Constr. Build. Mater., 125, 94-104. https://doi.org/10.1016/j.conbuildmat.2016.08.028.
  3. Anil, O., Erdem, R.T., Tokgoz, M.N., Anil, O., Erdem, R.T. and Tokgoz, M.N. (2018), "Investigation of lateral impact behavior of RC columns", Comput. Concrete, 22(1), 123. https://doi.org/10.12989/cac.2018.22.1.123.
  4. Bhatti, A.Q., Kishi, N. and Tan, K.H. (2011), "Impact resistant behaviour of RC slab strengthened with FRP sheet", Mater. Struct. Constr., 44(10), 1855-1864. https://doi.org/10.1617/s11527-011-9742-9.
  5. Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", ACI Struct. J., 82(6), 797-804. https://doi.org/10.14359/10390.
  6. Corbett, G.G., Reid, S.R. and Johnson, W. (1996), "Impact loading of plates and shells by free-flying projectiles: A review", Int. J. Impact Eng., 18(2), 141-230. https://doi.org/10.1016/0734-743X(95)00023-4.
  7. Cotsovos, D.M. and Pavlovic, M.N. (2008a), "Numerical investigation of concrete subjected to high rates of uniaxial tensile loading", Int. J. Impact Eng., 35(5), 319-335. https://doi.org/10.1016/j.ijimpeng.2007.03.006.
  8. Cotsovos, D.M. and Pavlovic, M.N. (2008b), "Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates", Comput. Struct., 86(1-2), 145-163. https://doi.org/10.1016/j.compstruc.2007.05.014.
  9. Elnagar, A.B., Afefy, H.M., Baraghith, A.T. and Mahmoud, M.H. (2019), "Experimental and numerical investigations on the impact resistance of SHCC-strengthened RC slabs subjected to drop weight loading", Constr. Build. Mater., 229, 116866. https://doi.org/10.1016/j.conbuildmat.2019.116866.
  10. Emara, M., Barris, C., Baena, M., Torres, L. and Barros, J. (2018), "Bond behavior of NSM CFRP laminates in concrete under sustained loading", Constr. Build. Mater., 177, 237-246. https://doi.org/10.1016/j.conbuildmat.2018.05.050.
  11. Emara, M, and Hamoda, A. (2019), "Numerical modeling of time-displacement response of RC slab subjected to impact loading", IOSR J. Mech. Civil Eng., 16(5), 11-20. https://doi.org/10.9790/1684-1605031120www.iosrjournals.org.
  12. Emara, M., Baena, M., Barris, C., Torres, L. and Moawad, M. (2017), "Time-dependent bond behavior between NSM CFRP strips and concrete", Proceedings of the Fourth Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Zurich, Switzerland, September.
  13. Emara, M., Elkomy, N. and Hassan, H. (2021), "Numerical assessment of reinforced concrete beams strengthened with CFRP sheets under impact loading", Frat. ed Integrita Strutt., 15(58), 48-64. https://doi.org/10.3221/IGF-ESIS.58.04.
  14. Erdem, R.T. (2021), "Estimation of impact characteristics of RC slabs under sudden loading", Comput. Concrete, 28(5), 479. https://doi.org/10.12989/cac.2021.28.5.479.
  15. Fujikake, K., Li, B. and Soeun, S. (2009), "Impact response of reinforced concrete beam and its analytical evaluation", J. Struct. Eng., 135(8), 938-950. https://doi.org/10.1061/(asce)st.1943-541x.0000039.
  16. Hamoda, A., Emara, M. and Mansour, W. (2019), "Behavior of steel I-beam embedded in normal and steel fiber reinforced concrete incorporating demountable bolted connectors", Compos. Part B Eng., 174, 106996. https://doi.org/10.1016/j.compositesb.2019.106996.
  17. Hamoda, A., Abdelazeem, F. and Emara, M. (2020), "Concentric compressive behavior of hybrid concrete-stainless steel double-skin tubular columns incorporating high performance concretes", Thin Wall. Struct., 159, 107297. https://doi.org/10.1016/j.tws.2020.107297.
  18. Hao, Y. and Hao, H. (2014), "Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings", Eng. Struct., 73, 24-38. https://doi.org/10.1016/j.engstruct.2014.04.042.
  19. Hibbitt, Karlsson & Sorensen, Inc. (2000), ABAQUS Theory Manual, User manual and Example Manual, Version 6.7, Hibbitt, Karlsson & Sorensen, Inc., USA.
  20. Husem, M., Cosgun, S.I., Husem, M. and Cosgun, S.I., (2016), "Behavior of reinforced concrete plates under impact loading: Different support conditions and sizes", Comput. Concrete, 18(3), 389. https://doi.org/10.12989/cac.2016.18.3.389.
  21. Islam, M.J., Liu, Z., Swaddiwudhipong, S., Islam, M.J., Liu, Z. and Swaddiwudhipong, S. (2011), "Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile", Comput. Concrete, 8(1), 111-123. https://doi.org/10.12989/cac.2011.8.1.111.
  22. Jafarian, N., Mostofinejad, D. and Naderi, A., (2020), "Effects of FRP grids on punching shear behavior of reinforced concrete slabs", Struct., 28, 2523-2536. https://doi.org/10.1016/J.ISTRUC.2020.10.061.
  23. Kadhim, M.M.A., Jawdhari, A.R., Altaee, M.J. and Adheem, A.H. (2020), "Finite element modelling and parametric analysis of FRP strengthened RC beams under impact load", J. Build. Eng., 32, 101526. https://doi.org/10.1016/j.jobe.2020.101526.
  24. Kim, Y.J., Hyun, S.W. and Seo, J. (2014), "Reliability of CFRP-strengthened concrete members in aggressive service environments", 7th International Conference on FRP Composites in Civil Engineering, CICE 2014, Vancouver, Canada, August.
  25. Kim, Y.J., Siriwardanage, T., Hmidan, A. and Seo, J., (2014), "Material characteristics and residual bond properties of organic and inorganic resins for CFRP composites in thermal exposure", Constr. Build. Mater., 50, 631-641. https://doi.org/10.1016/J.CONBUILDMAT.2013.10.009.
  26. Kumar, V., Iqbal, M.A. and Mittal, A.K. (2018), "Experimental investigation of prestressed and reinforced concrete plates under falling weight impactor", Thin Wall. Struct., 126, 106-116. https://doi.org/10.1016/j.tws.2017.06.028.
  27. Li, Q.M., Reid, S.R., Wen, H.M. and Telford, A.R. (2006), "Local impact effects of hard missiles on concrete targets", Int. J. Impact Eng., 32(1-4), 224-284. https://doi.org/10.1016/j.ijimpeng.2005.04.005.
  28. Lu, G., Li, X., Wang, K., Lu, G., Li, X. and Wang, K., (2012), "A numerical study on the damage of projectile impact on concrete targets", Comput. Concrete, 9(1), 21-33. https://doi.org/10.12989/cac.2012.9.1.021.
  29. Martin, O. (2010), Comparison of Different Constitutive Models for Concrete in ABAQUS/Explicit for Missile Impact Analyses Report, Joint Research Centre Institute for Energy, Luxembourg, The Netherlands.
  30. May, I.M., Chen, Y., Owen, D.R.J., Feng, Y.T. and Thiele, P.J. (2006), "Reinforced concrete beams under drop-weight impact loads", Comput. Concrete, 3(2), 79-90. https://doi.org/10.12989/cac.2006.3.2/3.079.
  31. Meisami, M.H., Mostofinejad, D. and Nakamura, H. (2013a), "Punching shear strengthening of two-way flat slabs with CFRP grids", J. Compos. Constr., 18(2), 04013047. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000443.
  32. Meisami, M.H., Mostofinejad, D. and Nakamura, H., (2013b), "Punching shear strengthening of two-way flat slabs using CFRP rods", Compos. Struct., 99, 112-122. https://doi.org/10.1016/J.COMPSTRUCT.2012.11.028.
  33. Meisami, M.H., Mostofinejad, D. and Nakamura, H., (2015), "Strengthening of flat slabs with FRP fan for punching shear", Compos. Struct., 119, 305-314. https://doi.org/10.1016/J.COMPSTRUCT.2014.08.041.
  34. Micallef, K., Sagaseta, J., Fernandez Ruiz, M. and Muttoni, A. (2014), "Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading", Int. J. Impact Eng., 71, 17-33. https://doi.org/10.1016/j.ijimpeng.2014.04.003.
  35. Min, K.H., Yang, J.M., Yoo, D.Y. and Yoon, Y.S. (2011), "Flexural and punching performances of FRP and fiber reinforced concrete on impact loading", Proceedings of the 5th International Conference on FRP Composites in Civil Engineering (CICE 2010), Beijing, China, September.
  36. Mostofinejad, D., Jafarian, N., Naderi, A., Mostofinejad, A. and Salehi, M. (2020), "Effects of openings on the punching shear strength of reinforced concrete slabs", Struct., 25, 760-773. https://doi.org/10.1016/J.ISTRUC.2020.03.061.
  37. Nasrin, S. and Ibrahim, A. (2019), "Numerical study on the low-velocity impact response of ultra-high-performance fiber reinforced concrete beams", Struct., 20, 570-580. https://doi.org/10.1016/j.istruc.2019.06.011.
  38. Othman, H. and Marzouk, H. (2016), "An experimental investigation on the effect of steel reinforcement on impact response of reinforced concrete plates", Int. J. Impact Eng., 88, 12-21. https://doi.org/10.1016/j.ijimpeng.2015.08.015.
  39. Othman, H. and Marzouk, H. (2018), "Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads", Int. J. Impact Eng., 114, 20-31. https://doi.org/10.1016/j.ijimpeng.2017.12.013.
  40. Perumal, R. (2014), "Performance and modeling of high-performance steel fiber reinforced concrete under impact loads", Comput. Concrete, 13(2), 255. https://doi.org/10.12989/cac.2014.13.2.255.
  41. Pham, T.M. and Hao, H. (2016a), "Impact behavior of FRP-strengthened RC beams without stirrups", J. Compos. Constr., 20(4), 04016011. https://doi.org/10.1061/(asce)cc.1943-5614.0000671.
  42. Pham, T.M. and Hao, H. (2016b), "Review of concrete structures strengthened with FRP against impact loading", Struct., 20, 59-70. https://doi.org/10.1016/j.istruc.2016.05.003
  43. Pham, T.M. and Hao, H. (2017), "Behavior of fiber-reinforced polymer-strengthened reinforced concrete beams under static and impact loads", Int. J. Prot. Struct., 8(1), 3-24. https://doi.org/10.1177/2041419616658730.
  44. Pham, T.M. and Hao, H. (2018), "Influence of global stiffness and equivalent model on prediction of impact response of RC beams", Int. J. Impact Eng., 113, 88-97. https://doi.org/10.1016/j.ijimpeng.2017.11.014.
  45. Qingfeng, H., Jiang, L., Leiyang, Y. and Jiawei, M. (2020), "Numerical simulation on impact test of CFRP strengthened reinforced concrete beams", Front. Mater., 7, 252. https://doi.org/10.3389/fmats.2020.00252.
  46. Radnic, J., Matesan, D., Grgic, N. and Baloevic, G. (2015), "Impact testing of RC slabs strengthened with CFRP strips", Compos. Struct., 121, 90-103. https://doi.org/10.1016/j.compstruct.2014.10.033.
  47. Saatci, S. and Vecchio, F. (2009), "Nonlinear finite element modeling of reinforced concrete structures under impact loads", ACI Struct. J., 106(5), 717.
  48. Sadraie, H., Khaloo, A. and Soltani, H. (2019), "Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading", Eng. Struct., 191, 62-81. https://doi.org/10.1016/j.engstruct.2019.04.038.
  49. Selim Sengel, H., Erol, H., Yilmaz, T., Anil, O., Can Gurdal, H. and Muhammed Uludogan, A., (2022), "Low-velocity impact behavior of two-way RC slab strengthening with carbon TRM strips", Struct., 44, 1695-1714. https://doi.org/10.1016/J.ISTRUC.2022.08.108.
  50. Seo, J., Kim, Y.J. and Zandyavari, S. (2015), "Response surface metamodel-based performance reliability for reinforced concrete beams strengthened with FRP sheets", Spec. Publ., 304, 1-20. https://doi.org/10.14359/51688551.
  51. Siddika, A., Al Mamun, M.A., Alyousef, R. and Amran, Y.H.M. (2019), "Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review", J. Build. Eng., 25, 100798. https://doi.org/10.1016/j.jobe.2019.100798.
  52. Soltani, H., Khaloo, A. and Sadraie, H. (2020), "Dynamic performance enhancement of RC slabs by steel fibers vs. externally bonded GFRP sheets under impact loading", Eng. Struct., 213, 110539. https://doi.org/10.1016/j.engstruct.2020.110539.
  53. Takazawa, H., Hirosaka, K., Miyazaki, K., Tohyama, N., Saigo, S. and Matsumoto, N. (2018), "Numerical simulation of impact loading for reinforced concrete wall", Int. J. Press. Vessel. Pip., 167, 66-71. https://doi.org/10.1016/j.ijpvp.2018.10.010.
  54. Tang, T. and Saadatmanesh, H. (2003), "Behavior of concrete beams strengthened with fiber-reinforced polymer laminates under impact loading", J. Compos. Constr., 7(3), 209-218. https://doi.org/10.1061/(asce)1090-0268(2003)7:3(209).
  55. Thai, D.K. and Kim, S.E. (2014), "Failure analysis of reinforced concrete walls under impact loading using the finite element approach", Eng. Fail. Anal., 45, 252-277. https://doi.org/10.1016/j.engfailanal.2014.06.006.
  56. Thai, D.K. and Kim, S.E. (2017), "Numerical simulation of pre-stressed concrete slab subjected to moderate velocity impact loading", Eng. Fail. Anal., 79, 820-835. https://doi.org/10.1016/j.engfailanal.2017.05.020.
  57. Thai, D.K., Nguyen, D.L. and Kim, S.E. (2019), "Numerical investigation on local damage of proposed RC panels under impact loading", Nucl. Eng. Des., 341, 377-389. https://doi.org/10.1016/j.nucengdes.2018.11.025.
  58. Torabian, A., Isufi, B., Mostofinejad, D. and Pinho Ramos, A. (2020), "Flexural strengthening of flat slabs with FRP composites using EBR and EBROG methods", Eng. Struct., 211, 110483. https://doi.org/10.1016/J.ENGSTRUCT.2020.110483.
  59. Torabian, A., Isufi, B., Mostofinejad, D. and Pinho Ramos, A., (2021), "Shear and flexural strengthening of deficient flat slabs with post-installed bolts and CFRP composites bonded through EBR and EBROG", Struct. Concrete, 22(2), 1147-1164. https://doi.org/10.1002/SUCO.202000236.
  60. Torabian, A., Isufi, B., Mostofinejad, D. and Ramos, A.P. (2019), "Behavior of thin lightly reinforced flat slabs under concentric loading", Eng. Struct., 196, 109327. https://doi.org/10.1016/J.ENGSTRUCT.2019.109327.
  61. Trommels, H. (2009), "Towards simplified tools for analysis of reinforced concrete structures subjected to impact and impulsive loading: A preliminary investigation", MSc. Thesis, University of Toronto, Toronto, Canada.
  62. Wang, W. and Chouw, N. (2018), "Flexural behaviour of FFRP wrapped CFRC beams under static and impact loadings", Int. J. Impact Eng., 111, 46-54. https://doi.org/10.1016/j.ijimpeng.2017.08.010.
  63. White, T.W., Soudki, K.A. and Erki, M.A. (2001), "Response of RC beams strengthened with CFRP laminates and subjected to a high rate of loading", J. Compos. Constr., 5(3), 153-162. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(153).
  64. Yilmaz, T., Anil, O. and Tugrul Erdem, R., (2022), "Experimental and numerical investigation of impact behavior of RC slab with different opening size and layout", Struct., 35, 818-832. https://doi.org/10.1016/J.ISTRUC.2021.11.057.
  65. Yilmaz, T., Kirac, N., Anil, O., Erdem, R.T. and Sezer, C. (2018), "Low-velocity impact behaviour of two way RC slab strengthening with CFRP strips", Constr. Build. Mater., 186, 1046-1063. https://doi.org/10.1016/j.conbuildmat.2018.08.027.