References
- Aliha, M.R.M., Imani, D.M., Salehi, S.M., Shojaee, M., Abedi, M. (2022), "Mixture optimization of epoxy base concrete for achieving highest fracture toughness and fracture energy values using Taguchi method", Compos. Commun., 32, 101150. https://doi.org/10.1016/j.coco.2022.101150.
- Aliha, M.R.M., Reza Karimi, H., Ghoreishi, S.M.N. (2022), "Design and validation of simple bend beam specimen for covering the full range of I+ II fracture modes", Eur. J. Mech.-A/Solid., 91, 104425. https://doi.org/10.1016/j.euromechsol.2021.104425.
- Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
- Shemirani, A.B., Sarfarazi, V., Haeri, H., Marji, M.F. and Shahin Hosseini, S. (2018), "A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks", Comput. Concrete, 21(2), 189-197. https://doi.org/10.12989/cac.2018.21.2.189.
- Bi, J. and Zhou, X.P. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49, 1611-162. https://doi.org/10.1007/s00603-015-0867-y.
- Chehade, F.H. and Shahrour, I. (2008), "Numerical analysis of the interaction between twin-tunnels: Influence of the relative position and construction procedure", Tunn. Undergr. Space Techol., 23, 210-214. https://doi.org/10.1016/j.tust.2007.03.004.
- Cui, Z.D., Liu, D.A., An, G.M., Sun, B., Zhou, M., Cao, F.Q. (2010), "A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness", Int. J. Rock Mech. Min. Sci. 47, 871-876. https://doi.org/10.1016/j.ijrmms.2009.12.015.
- Chen, R.P., Zhu, J., Liu, W. and Tang, X.W. (2011), "Ground movement induced by parallel EPB tunnels in silty soils", Tunn. Undergr. Space Technol., 26(1), 163-171. https://doi.org/10.1016/j.tust.2010.09.004.
- Chung, J.S., Moon, I.K. and Yoo, C.H. (2013), "Behaviour characteristics of tunnel in the cavity ground by using scale model tests", J. Korean Geo Environ. Soc., 14(12), 61-69. https://doi.org/10.14481/jkges.2013.14.12.061.
- Demir, A. and Caglar, N. (2020), "Numerical determination of crack width for reinforced concrete deep beams", Comput. Concrete, 27(2), 193-204. https://doi.org/10.12989/cac.2020.27.2.193.
- Das, R., Singh, P.K., Kainthoal, A., Panthee, S. and Singh, T.N. (2017), "Numerical analysis of surface subsidence in asymmetric parallel highway tunnels", J. Rock Mech. Geotech. Eng., 9, 170-179. https://doi.org/10.1016/j.jrmge.2016.11.009.
- Ghaboussi, J. and Ranken, R.E. (1977), "Interaction between two parallel tunnels", Int. J. Numer. Anal. Method. Geomech, 1(1), 75-103. https://doi.org/10.1002/nag.1610010107.
- Gercek, H. (2005), "Interaction between parallel underground openings", The 19th International Mining Congress and Fair of Turkey, Izmir, Turkiye, June.
- Huang, Y.Q. and Hu, S.W. (2019), "A cohesive model for concrete mesostructure considering friction effect between cracks", Comput. Concrete, 24(1), 51-61. https://doi.org/10.12989/cac.2019.24.1.051.
- Huang, X., Huang, H. and Zhang, J. (2012), "Flattening of jointed shield-driven tunnel induced by longitudinal differential settlements", Tunn. Undergr. Space Technol., 31, 20-32. https://doi.org/10.1016/j.tust.2012.04.002.
- Hsiao, F.Y., Wang, C.L. and Chern, J.C. (2009) "Numerical simulation of rock deformation for support design in tunnel intersection area", Tunn. Undergr. Space Tech., 24, 14-21. https://doi.org/10.1016/j.tust.2008.01.003.
- Iqbal, M.J. and Mohanty, B. (2007), "Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks", Rock Mech. Rock Eng., 40(5), 453-475. https://doi.org/10.1007/s00603-006-0107-6.
- Itasca Consulting Group Inc. (2004), Particle Flow Code in 2-Dimensions (PFC2D), Version 3.10, Itasca Consulting Group Inc., Minneapolis, Minnesota, USA.
- Kim, W.B., Yang, H.S. and Ha, T.H. (2012), "An assessment of rock pillar behavior in very near parallel tunnel", J. Korean Tunn. Undergr. Space Assoc., 22(1), 60-68. https://doi.org/10.7474/TUS.2012.22.1.060.
- Kim, J.K. and Lee, S. (2013), "A study on the estimation of the behaviors by compression method of rock pillar between close parallel tunnels", J. Korean Geotech. Soc., 29(12), 87-94. https://doi.org/10.7843/kgs.2013. 29.12.87.
- Kang, J.G., Yang, H.S. and Jang, S.J. (2014), "Stability analysis of rock pillar in the diverging area of road tunnel", J. Korean Tunn. Undergr. Space Assoc., 24(5), 344-353. https://doi.org/10.7474/TUS.2014.24.5.344.
- Kovari, K. (2003), "History of the sprayed concrete lining method-part II: Milestones up to the 1960s", Tunn. Undergr. Space Technol., 18(1), 71-83. https://doi.org/10.1016/S0886-798(03)00006-3.
- Kim, J.H. and Kim, J.W. (2017), "Stability estimation of the pillar between twin tunnels considering various site conditions", J. Korean Tunn. Undergr. Space Assoc., 27(2), 109-119. https://doi.org/10.7474/TUS.2017.27.2.109.
- Lim, H.M. and Son, K.R. (2014), "The stability analysis of near parallel tunnels pillar at multi-layered soil with shallow depth by numerical analysis", J. Korean Geo Environ. Soc, 15(1), 53-62. https://doi.org/10.14481/jkges.2014.15.1.53.
- Liu, H.Y., Small, J.C., Carter, J.P. and Williams, D.J. (2009), "Effects of tunnelling on existing support systems of perpendicularly crossing tunnels", Comput. Geotech., 36(5), 880-894. https://doi.org/10.1016/j.compgeo.2009.01.013.
- Li, X.G. and Yuan, D.J. (2012), "Response of a double-decked metro tunnel to shield driving of twin closely under-crossing tunnels", Tunn. Undergr. Space Technol., 28, 18-30. https://doi.org/10.1016/j.tust.2011.08.005.
- Li, X., Yan, Z., Wang, Z. and Zhu, H. (2015), "Experimental and analytical study on longitudinal joint opening of concrete segmental lining", Tunn. Undergr. Space Technol., 46, 52-63. https://doi.org/10.1016/j.tust.2014.11.002.
- Mota, M. (2021), "A 3D probabilistic model for explicit cracking of concrete", Comput. Concrete, 27(6), 549-562. https://doi.org/10.12989/cac.2021.27.6.549.
- Moallemi, S. and Pietruszczak, S. (2018), "Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR", Comput. Concrete, 22(1), 1-10. https://doi.org/10.12989/cac.2018.22.1.001.
- Najjar, S., Moghaddam, A.M., Sahaf, A. and Aliha, M.R.M. (2022), "Aging effect on the mixed-mode (I/III) fracture toughness of cement emulsified asphalt composite: Experimental and statistical investigation engineering", Frac. Mech., 21(3), 108292. https://doi.org/10.1016/j.engfracmech.2022.108292.
- Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
- Shin, J.H., Potts, D.M. and Zdravkovic, L. (2005), "The effect of pore-water pressure on NATM tunnel linings in decomposed granite soil", Canadian Geotech. J., 42(6), 1585-1599. https://doi.org/10.1139/t05-072.
- Shou, Y. and Zhou, X.P. (2019a), "A coupled thermomechanical nonordinary state-based peridynamics for thermally induced cracking of rocks", Fatigue Fract. Eng. Mater. Struct., 43(2), 371-386. https://doi.org/10.1111/ffe.13155.
- Shou, Y. and Zhou, X.P. (2019b), "3D numerical simulation of initiation, propagation and coalescence of cracks using the extended non-ordinary state-based peridynamics", Theoret. Appl. Fract. Mech., 101, 254-268. https://doi.org/10.1016/j.tafmec.2019.03.006.
- Shi, J., Ng, C.W.W. and Chen, Y. (2015), "Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel", Comput. Geotech., 63, 146-158. https://doi.org/ 10.1016/j.compgeo.2014.09.002.
- Tutluoglu, L., Batan, C.K. and Aliha, M.R.M. (2022), "Tensile mode fracture toughness experiments on andesite rock using disc and semi-disc bend geometries with varying loading spans" Theoret. Appl. Fract. Mech., 119, 103325. https://doi.org/10.1016/j.tafmec.2022.103325.
- Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.000.
- Xie, J., Gunn, M.J. and Rahim, A. (2004), "Collapse analysis for two parallel circular tunnels with different diameters in soil", Proceedings of 9th International Symposium on Numerical Models in Geomechanics - NUMOG IX, Ottawa, Canada, August.
- Ye, F., Gou, C.F., Sun, H.D., Liu, Y.P., Xia, Y.X. and Zhou, Z. (2014), "Model test study on effective ratio of segment transverse bending rigidity of shield tunnel", Tunn. Undergr. Space Technol., 41, 193-205. https://doi.org/10.1016/j.tust.2013.12.011.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., O ner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
- Yaylaci, M., Yayli, M., Yaylaci E.U., O lmez, H. and Birinci A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yu, A., Andersen, D.H., He, J., Zhang, Z. (2021), "Is it possible to measure the tensile strength and fracture toughness simultaneously using flattened Brazilian disk?", Eng. Fract. Mech., 247, 107633. https://doi.org/10.1016/j.engfracmech.2021.107633.
- Yaylaci, M., Adiyaman, E., O ner, E. and Birinci, A. (2021c), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-207. https://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2020a), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
- Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541.
- Yaylaci, M. and Avcar, M. (2020b), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114, https://doi.org/10.12989/cac.2020.26.2.107.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Zhu, X. and Chen, X. (2019), "Analysis of notch depth and loading rate effects on crack growth in concrete by FE and DIC", Comput. Concrete, 24(6), 527-539. https://doi.org/10.12989/cac.2019.24.6.527.
- Zhou, X.P., Bi, J. and Qian, Q.H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple preexisting flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4.