DOI QR코드

DOI QR Code

Seismic response of adjacent buildings interconnected by viscous dampers considering soil-structure interaction

  • Yavuz S. Hatipoglu (Department of Civil Engineering, Engineering Faculty, Bayburt University) ;
  • Oguz A. Duzgun (Department of Civil Engineering, Engineering Faculty, Ataturk University)
  • Received : 2021.03.09
  • Accepted : 2023.01.30
  • Published : 2023.03.25

Abstract

The effectiveness of fluid viscous dampers (FVDs) on dynamic response mitigation of coupled two adjacent structures was investigated, considering soil-structure interaction (SSI) effects under earthquake excitation. A numerical procedure was employed to evaluate system response. The finite elements were used for the numerical treatment of the adjacent buildings and soil region. Viscous boundary conditions were used as special non-reflecting boundaries on the edges of finite soil region. According to the results, the FVDs were found to be very effective for dynamic response mitigation of the adjacent buildings, even if considering the soil medium. The results showed that the most affecting parameter on the system response was found to be soil type. It was also concluded that when adjacent structures coupled by FVDs, the maximum values of the roof displacements, the base shear forces, and the base bending moments could decrease up to around 50%. Changing in lateral stiffness of the one building has minor effects on the effectiveness of viscous dampers.

Keywords

References

  1. Abdeddaim, M., Ounis, A., Bharti, S. and Shrimali, M. (2019), "Seismic retrofitting using the concept of coupling two adjacent buildings", Recent Adv. Struct. Eng., 2, 355-363. https://doi.org/10.1007/978-981-13-0365-4_30.
  2. Al-Fahdawi, O.A., Barroso, L.R. and Soares, R.W. (2019), "Simple adaptive control method for mitigating the seismic responses of coupled adjacent buildings considering parameter variations", Eng. Struct., 186, 369-381. https://doi.org/10.1016/j.engstruct.2019.02.025.
  3. ANSYS (2021), ANSYS Academic Research Mechanical (Version 19).
  4. Aval, S.B.B., Farrokhi, A., Fallah, A. and Tsouvalas, A. (2017), "The seismic reliability of two connected SMRF structures", Earthq. Struct., 13(2), 151-164. http://doi.org/10.12989/eas.2017.13.2.151.
  5. Avinash, A., Lingaraju, M. and Kamath, K. (2017), "Seismic performance of adjacent structures connected with fluid viscous dampers by considering soil structure interaction-An analytical study", Int. J. Civil Eng. Technol., 8(7), 421-431.
  6. Aydin, E., Ozturk, B., Bogdanovic, A. and Farsangi, E.N. (2020), "Influence of soil-structure interaction (SSI) on optimal design of passive damping devices", Struct., 28, 847-862. https://doi.org/10.1016/j.istruc.2020.09.028.
  7. Bakre, S. and Jangid, R. (2007), "Optimum parameters of tuned mass damper for damped main system", Struct, Control Health Monit., 14(3), 448-470. https://doi.org/10.1002/stc.166.
  8. Bharti, S., Dumne, S. and Shrimali, M. (2010), "Seismic response analysis of adjacent buildings connected with MR dampers", Eng. Struct., 32(8), 2122-2133. https://doi.org/10.1016/j.engstruct.2010.03.015.
  9. Bhaskararao, A. and Jangid, R. (2004), "Seismic response of adjacent buildings connected with dampers", 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August.
  10. Bhaskararao, A. and Jangid, R. (2006a), "Harmonic response of adjacent structures connected with a friction damper", J. Sound Vib., 292(3-5), 710-725. https://doi.org/10.1016/j.jsv.2005.08.029.
  11. Bhaskararao, A. and Jangid, R. (2006b), "Seismic response of adjacent buildings connected with friction dampers", Bull. Earthq. Eng., 4(1), 43-64. https://doi.org/10.1007/s10518-005-5410-1.
  12. Bhaskararao, A. and Jangid, R. (2006c), "Seismic analysis of structures connected with friction dampers", Eng. Struct., 28(5), 690-703. https://doi.org/10.1016/j.engstruct.2005.09.020.
  13. Bhaskararao, A. and Jangid, R. (2007), "Optimum viscous damper for connecting adjacent SDOF structures for harmonic and stationary white-noise random excitations", Earthq. Eng. Struct. Dyn., 36(4), 563-571. https://doi.org/10.1002/eqe.636.
  14. Cimellaro, G.P. and Garcia, D.L. (2007), "Seismic response of adjacent buildings connected by nonlinear viscous dampers", Research Frontiers at Structures Congress 2007, Long Beach, California, USA.
  15. De Domenico, D., Ricciardi, G. and Takewaki, I. (2019), "Design strategies of viscous dampers for seismic protection of building structures: A review", Soil Dyn. Earthq. Eng., 118, 144-165. https://doi.org/10.1016/j.soildyn.2018.12.024.
  16. Duzgun, O.A. and Hatipoglu, Y.S. (2022), "Effective damping coefficient of fluid viscous dampers for dynamic response mitigation of coupled frames", J. Vib. Eng. Technol., 2022, 1-15. https://doi.org/10.1007/s42417-022-00673-y.
  17. Elias, S., Matsagar, V. and Datta, T.K. (2017), "Distributed multiple tuned mass dampers for wind response control of chimney with flexible foundation", Procedia Eng., 199, 1641-1646. https://doi.org/10.1016/j.proeng.2017.09.087.
  18. Farghaly, A.A. (2014), "Optimization of viscous dampers with the influence of soil structure interaction on response of two adjacent 3-D buildings under seismic load", IOSR J. Eng., 4(1), 18-27. https://doi.org/10.9790/3021-04161827
  19. Farghaly, A.A. (2015), "Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds", Smart Struct. Syst., 15(5), 1293-1309. https://doi.org/10.12989/sss.2015.15.5.1293.
  20. Fattah, M.Y., Schanz, T. and Dawood, S.H. (2012), "The role of transmitting boundaries in modeling dynamic soil-structure interaction problems", Int. J. Eng. Technol., 2(2), 236-258.
  21. Hou, C.Y. (2008), "Fluid dynamics and behavior of nonlinear viscous fluid dampers", J. Struct. Eng., 134(1), 56-63. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(56).
  22. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T., Spencer, B. and Yao, J.T. (1997), "Structural control: Past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897).
  23. Luco, J.E. and De Barros, F.C.P. (1998), "Optimal damping between two adjacent elastic structures", Earthq. Eng. Struct. Dyn., 27(7), 649-659. https://doi.org/10.1002/(SICI)1096-9845(199807)27:7%3C649::AID-EQE748%3E3.0.CO,2-5.
  24. Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J.Eng. Mech. Div., 95(4), 859-878. https://doi.org/10.1061/JMCEA3.0001144.
  25. Makris, N. and Constantinou, M.C. (1990), "Viscous dampers: Testing, modeling and application in vibration and seismic isolation", NCEER-90-0028; State University of New York at Buffalo, Buffalo, New York.
  26. Patel, C.C. and Jangid, R. (2014), "Dynamic response of identical adjacent structures connected by viscous damper", Struct. Control Health Monit., 21(2), 205-224. https://doi.org/10.1002/stc.1566.
  27. Patel, C.C. and Jangid, R. (2008), "Influence of soil-structure interaction on response of adjacent SDOF structures connected by viscous damper", The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, October.
  28. Patel, C.C. (2011), "Dynamic response of viscous damper connected similar multi-degree of freedom structures", Int. J. Earth Sci. Eng., 4(6), 1068-1071.
  29. Perez, L, Avila, A. and Doz, G. (2015), "Coupled structural dynamic response using passive dampers", XVII International Symposium on Dynamic Problems of Mechanics, Natal, R.N., Brazil, February.
  30. Sangai, S. and Pawade, P. (2021), "Optimal placement of friction dampers in building considering nonlinearity of soil", Innov. Infrastr. Solut., 6, 1-18. https://doi.org/10.1007/s41062-020-00395-8.
  31. Sangai, S. and Pawade, P. (2022), "Performance evaluation of friction dampers for building with soil-structure interaction", Mater. Today: Proc., 60(1), 194-210. https://doi.org/10.1016/j.matpr.2021.12.439.
  32. Shrimali, M. and Bharti, S. (2008), "Earthquake performance of coupled building by VF damper", The 14th World Conference on Earthquake Engineering, WCEE, Beijing, China, October.
  33. Shrimali, M. and Dumne, S. (2008), "Seismic analysis of connected isolated buildings by VF dampers", The 14th World Conference on Earthquake Engineering, WCEE, Beijing, China, October.
  34. Talyan, N., Elias, S. and Matsagar, V. (2021), "Earthquake response control of isolated bridges using supplementary passive dampers", Pract. Period. Struct. Des. Constr., 26(2), https://doi.org/10.1061/(ASCE)SC.1943-5576.0000563.
  35. Tezcan, S.S. and Uluca, O. (2003), "Reduction of earthquake response of plane frame buildings by viscoelastic dampers", Eng. Struct., 25(14), 1755-1761. https://doi.org/10.1016/j.engstruct.2003.07.001.
  36. Tubaldi, E., Barbato, M. and Dall'Asta, A. (2014), "Performance based seismic risk assessment for buildings equipped with linear and nonlinear viscous dampers", Eng. Struct., 78, 90-99. https://doi.org/10.1016/j.engstruct.2014.04.052.
  37. Tubaldi, E. (2015), "Dynamic behavior of adjacent buildings connected by linear viscous/viscoelastic dampers", Struct. Control Health Monit., 22(8), 1086-1102. https://doi.org/10.1002/stc.1734.
  38. Uz, M.E. (2009), "Improving the dynamic behaviour of adjacent buildings by connecting them with fluid viscous dampers", M.S thesis, University of Wollongong, Australia.
  39. Uz, M.E. and Hadi, M.N.S. (2009), "Dynamic analyses of adjacent buildings connected by fluid viscous dampers", Earthq. Resist. Eng. Struct., 104, 139-150. https://doi.org/10.2495/ERES090131.
  40. Westermo, B.D. (1989), "The dynamics of interstructural connection to prevent pounding", Earthq. Eng. Struct. Dyn., 18(5), 687-699. https://doi.org/10.1002/eqe.4290180508.
  41. Wolf, J.P. (1988), "Soil-structure-interaction analysis in time domain", Prentice-Hall, International Series in Civil Engineering and Engineering Mechanics, 1st Edition, Prentice-Hall, Hoboken, New Jersey, USA.
  42. Wu, Q.Y., Zhu, H.P. and Chen, X.Y. (2017), "Seismic fragility analysis of adjacent inelastic structures connected with viscous fluid dampers", Adv. Struct. Eng., 20(1), 18-33. https://doi.org/10.1177/1369433216646000.
  43. Xu, Y., He, Q. and Ko, J. (1999), "Dynamic response of damper-connected adjacent buildings under earthquake excitation", Eng. Struct., 21(2), 135-148. https://doi.org/10.1016/S0141-0296(97)00154-5.
  44. Yang, Z., Xu, Y. and Lu, X. (2003), "Experimental seismic study of adjacent buildings with fluid dampers", J. Struct. Eng., 129(2), 197-205. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(197).
  45. Zhang, W. and Xu, Y. (1999), "Dynamic characteristics and seismic response of adjacent buildings linked by discrete dampers", Earthq. Eng. Struct. Dyn., 28(10), 1163-1185. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1163::AID-EQE860>3.0.CO,2-0.
  46. Zhang, W. and Xu, Y. (2000), "Vibration analysis of two buildings linked by Maxwell model-defined fluid dampers", J. Sound Vib., 233(5), 775-796. https://doi.org/10.1006/jsvi.1999.2735.
  47. Zhu, H. and Iemura, H. (2000), "A study of response control on the passive coupling element between two parallel structures", Struct. Eng. Mech,, 9(4), 383-396. http://doi.org/10.12989/sem.2000.9.4.383.
  48. Zhu, H, Wen, Y and Iemura, H (2001), "A study on interaction control for seismic response of parallel structures", Comput. Struct., 79(2), 231-242. https://doi.org/10.1016/S0045-7949(00)00119-X.
  49. Zhu, H. and Xu, Y. (2005), "Optimum parameters of Maxwell model-defined dampers used to link adjacent structures", J. Sound Vib., 279(1-2), 253-274. https://doi.org/10.1016/j.jsv.2003.10.035.
  50. Zou, L., Huang, K., Wang, L., Butterworth, J. and Ma, X. (2012), "Vibration control of adjacent buildings considering pile-soil-structure interaction", J. Vib. Control, 18(5), 684-695. https://doi.org/10.1177/1077546311408989.