DOI QR코드

DOI QR Code

랜덤포레스트 기반 실내공간 내외주부의 하절기 평균복사온도 가상센싱 모델 개발

Development of Mean Radiant Temperature Virtual Sensor for Core and Perimeter Zones during the Summer using Random Forest

  • 성승호 (경북대 건설환경에너지공학부) ;
  • 윤우승 (경북대 건설환경에너지공학부) ;
  • 유원택 (경북대 건설환경에너지공학부) ;
  • 서현철 (경북대 건축학부) ;
  • 홍원화 (경북대 건설환경에너지공학부)
  • Sung, Seung-Ho (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Yun, Woo-Seung (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Ryu, Wontaek (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Seo, Hyuncheol (School of Architecture, Kyungpook National University) ;
  • Hong, Won-Hwa (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University)
  • 투고 : 2022.10.02
  • 심사 : 2022.12.03
  • 발행 : 2023.03.30

초록

Mean radiant temperature (MRT) is one of many significant factors that influence an occupant's thermal comfort. There is a deviation in the MRT between the indoor core and perimeter zones depending on a building's thermal properties; this deviation must be mitigated to ensure thermal comfort. However, there are various practical limitations involved in directly measuring the MRT of these zones. Therefore, this study developed a model that virtually sensed the MRT of the core and perimeter zones using the random forest. To verify the model's performance, the experiment was conducted during the summer season when the MRT deviation between these zones are often the largest. As a result, the proposed model showed an MRT inference performance of 0.0568℃ in the core zone and 0.123℃ in the perimeter zone, based on the mean absolute error. This study demonstrated the potential of the MRT virtual sensor for evaluating the inference performance of the core and perimeter zones. The virtual sensor can be used in HVAC control systems to improve an occupant's thermal comfort.

키워드

과제정보

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1C1C1007127). 이 연구는 2020년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다. (No.20204010600060)

참고문헌

  1. Ahmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147, 77-89.  https://doi.org/10.1016/j.enbuild.2017.04.038
  2. Aparicio, P., Salmeron, J. M., Ruiz, A., Sanchez, F. J., & Brotas, L. (2016). The globe thermometer in comfort and environmental studies in buildings. Revista de la Construccion. Journal of Construction, 15(3), 57-66. 
  3. Chaloeytoy, K., Ichinose, M., & Sasaki, R. (2019, July). Comparing the occupants' comfort between perimeter zone and interior zone in Asian office. In IOP Conference Series: Earth and Environmental Science, Vol. 294, No.1, 012075. 
  4. Chen, R., Zhang, P., Wu, H., Wang, Z., & Zhong, Z. (2019). Prediction of shield tunneling-induced ground settlement using machine learning techniques. Frontiers of Structural and Civil Engineering, 13(6), 1363-1378.  https://doi.org/10.1007/s11709-019-0561-3
  5. Choi, Y., & Yoon, S. (2020). Virtual sensor-assisted in situ sensor calibration in operational HVAC systems. Building and Environment, 181, p 107079. 
  6. Chong, D., Zhu, N., Luo, W., & Pan, X. (2019). Human thermal risk prediction in indoor hyperthermal environments based on random forest. Sustainable Cities and Society, 49, 101595. 
  7. Cui, B., Fan, C., Munk, J., Mao, N., Xiao, F., Dong, J., & Kuruganti, T. (2019). A hybrid building thermal modeling approach for predicting temperatures in typical, detached, two-story houses. Applied Energy, 236, 101-116.  https://doi.org/10.1016/j.apenergy.2018.11.077
  8. Gonzalez, P. A., & Zamarreno, J. M. (2005). Prediction of hourly energy consumption in buildings based on a feedback artificial neural network. Energy and buildings, 37(6), 595-601.  https://doi.org/10.1016/j.enbuild.2004.09.006
  9. Guo, H., Aviv, D., Loyola, M., Teitelbaum, E., Houchois, N., & Meggers, F. (2020). On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review. Renewable and Sustainable Energy Reviews, 117, 109207. 
  10. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182. 
  11. Halawa, E., van Hoof, J., & Soebarto, V. (2014). The impacts of the thermal radiation field on thermal comfort, energy consumption and control-A critical overview. Renewable and Sustainable Energy Reviews, 37, 907-918.  https://doi.org/10.1016/j.rser.2014.05.040
  12. Han, J., Bae, J., Jang, J., Baek, J., & Leigh, S. B. (2019). The derivation of cooling set-point temperature in an HVAC system, considering mean radiant temperature. Sustainability, 11(19), 5417. 
  13. Huan, C., Zhang, S., & Lin, Z. (2021). Performance evaluation of mean radiant temperature calculated from inner surface temperatures of envelope with various emissivities. Building and Environment, 206, 108334. 
  14. International Organization for Standardization. (1998). Ergonomics of the thermal environment - Instruments for measuring physical quantities (ISO Standard No. 7726). Retrieved from https://www.iso.org/standard/14562.html 
  15. Jebli, I., Belouadha, F. Z., Kabbaj, M. I., & Tilioua, A. (2021). Prediction of solar energy guided by pearson correlation using machine learning. Energy, 224, 120109. 
  16. Kantor, N., & Unger, J. (2011). The most problematic variable in the course of human-biometeorological comfort assessment-the mean radiant temperature. Central European Journal of Geosciences, 3(1), 90-100. 
  17. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30. 
  18. Koch, W. (1962). Relationship between air temperature and mean radiant temperature in thermal comfort. Nature, 196(4854), 587-587.  https://doi.org/10.1038/196587a0
  19. Lee, D. S., Kim, E. J., Cho, Y. H., Kang, J. W., & Jo, J. H. (2019). A field study on application of infrared thermography for estimating mean radiant temperatures in large stadiums. Energy and Buildings, 202, 109360. 
  20. Lee, D. S., & Jo, J. H. (2022). Application of IR camera and pyranometer for estimation of longwave and shortwave mean radiant temperatures at multiple locations. Building and Environment, 207, 108423 
  21. Liyew, C. M., & Melese, H. A. (2021). Machine learning techniques to predict daily rainfall amount. Journal of Big Data, 8(1), 1-11.  https://doi.org/10.1186/s40537-020-00387-6
  22. Lou, R., Hallinan, K. P., Huang, K., & Reissman, T. (2020). Smart wifi thermostat-enabled thermal comfort control in residences. Sustainability, 12(5), 1919. 
  23. Masmoudi, S., & Mazouz, S. (2004). Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions. Energy and Buildings, 36(7), 710-719.  https://doi.org/10.1016/j.enbuild.2004.01.043
  24. McIntyre, D. A., & Griffiths, I. D. (1972). Subjective response to radiant and convective environments. Environmental Research, 5(4), 471-482.  https://doi.org/10.1016/0013-9351(72)90048-5
  25. McIntyre, D. A. (1980). Indoor climate. Elsevier.
  26. Park, S. H., & Song, D. S. (2020). Building Energy Consumption Prediction Considering the Occupants' Thermal Comfort and Behavioral Adaptation. The Society Of Air-Conditioning And Refrigerating Engineers Of Korea, 32(1), 27-36.  https://doi.org/10.6110/KJACR.2020.32.1.027
  27. Park, J., Choi, H., Kim, D., & Kim, T. (2021). Development of novel PMV-based HVAC control strategies using a mean radiant temperature prediction model by machine learning in Kuwaiti climate. Building and Environment, 206, 108357. 
  28. Parsons, K. (2006). Heat stress standard ISO 7243 and its global application. Industrial health, 44(3), 368-379.  https://doi.org/10.2486/indhealth.44.368
  29. Shin, H., & Park, C. (2017). Development of a Machine Learning Model for a Chiller using Random Forest Algorithm and Data Pre-processing. Journal of the Architectural Institute of Korea Structure & Construction, 33(9), 67-74. 
  30. Solano, E. S., Dehghanian, P., & Affonso, C. M. (2022). Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection. Energies, 15(19), 7049. 
  31. Tsanas, A., & Xifara, A. (2012). Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and buildings, 49, 560-567.  https://doi.org/10.1016/j.enbuild.2012.03.003
  32. Wu, Z., Li, N., Peng, J., Cui, H., Liu, P., Li, H., & Li, X. (2018). Using an ensemble machine learning methodology-Bagging to predict occupants' thermal comfort in buildings. Energy and Buildings, 173, 117-127. https://doi.org/10.1016/j.enbuild.2018.05.031