DOI QR코드

DOI QR Code

Growth of hexagonal Si epilayer on 4H-SiC substrate by mixed-source HVPE method

혼합 소스 HVPE 방법에 의한 4H-SiC 기판 위의 육각형 Si 에피층 성장

  • Kyoung Hwa Kim (Department of Nano Semiconductor, Korea Maritime and Ocean University) ;
  • Seonwoo Park (Department of Nano Semiconductor, Korea Maritime and Ocean University) ;
  • Suhyun Mun (Department of Nano Semiconductor, Korea Maritime and Ocean University) ;
  • Hyung Soo Ahn (Department of Nano Semiconductor, Korea Maritime and Ocean University) ;
  • Jae Hak Lee (Department of Nano Semiconductor, Korea Maritime and Ocean University) ;
  • Min Yang (Department of Nano Semiconductor, Korea Maritime and Ocean University) ;
  • Young Tea Chun (Department of Nano Semiconductor, Korea Maritime and Ocean University) ;
  • Sam Nyung Yi (Department of Nano Semiconductor, Korea Maritime and Ocean University) ;
  • Won Jae Lee (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Sang-Mo Koo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Suck-Whan Kim (Andong National University)
  • 김경화 (한국해양대학교 나노반도체공학과) ;
  • 박선우 (한국해양대학교 나노반도체공학과) ;
  • 문수현 (한국해양대학교 나노반도체공학과) ;
  • 안형수 (한국해양대학교 나노반도체공학과) ;
  • 이재학 (한국해양대학교 나노반도체공학과) ;
  • 양민 (한국해양대학교 나노반도체공학과) ;
  • 전영태 (한국해양대학교 나노반도체공학과) ;
  • 이삼녕 (한국해양대학교 나노반도체공학과) ;
  • 이원재 (동의대학교 신소재공학부) ;
  • 구상모 (광운대학교 전자재료공학과) ;
  • 김석환 (안동대학교 자연과학대학 물리학과)
  • Received : 2023.03.15
  • Accepted : 2023.03.29
  • Published : 2023.04.30

Abstract

The growth of Si on 4H-SiC substrate has a wide range of applications as a very useful material in power semiconductors, bipolar junction transistors and optoelectronics. However, it is considerably difficult to grow very fine crystalline Si on 4H-SiC owing to the lattice mismatch of approximately 20 % between Si and 4H-SiC. In this paper, we report the growth of a Si epilayer by an Al-related nanostructure cluster grown on a 4H-SiC substrate using a mixed-source hydride vapor phase epitaxy (HVPE) method. In order to grow hexagonal Si on the 4H-SIC substrate, we observed the process in which an Al-related nanostructure cluster was first formed and an epitaxial layer was formed by absorbing Si atoms. From the FE-SEM and Raman spectrum results of the Al-related nanostructure cluster and the hexagonal Si epitaxial layer, it was considered that the hexagonal Si epitaxial layer had different characteristics from the general cubic Si structure.

4H-SiC 기판 위의 Si 성장은 전력 반도체, 바이폴라 접합 트랜지스터 및 광전자 공학에서 매우 유용한 재료로서 광범위한 응용 분야를 가지고 있다. 그러나 Si와 4H-SiC 사이에 약 20 %의 격자 불일치로 인해 4H-SiC에서 매우 양질의 결정 Si를 성장시키는 것은 상당히 어렵다. 본 논문에서는 혼합 소스 수소화물 기상 에피택시 방법을 이용하여 4H-SiC 기판에서 성장한 Al 관련 나노 구조체 클러스터에 의한 육각형 Si 에피층의 성장을 보고한다. 4H-SiC 기판 위에 육각형 Si 에피층을 성장시키기 위해 먼저 Al 관련 나노 구조체 클러스터가 형성되고 Si 원자를 흡수하여 육각형 Si 에피층이 형성되는 과정을 관찰하였다. Al 관련 나노 구조체 클러스터와 육각형 Si 에피층에 대하여 FE-SEM 및 라만 스펙트럼 결과로부터 육각형 Si 에피층은 일반적인 입방정계 Si 구조와 다른 특성을 가지는 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 2022년 정부(산업통상자원부) 및 한국산업기술평가관리원의 지원을 받아 수행된 연구이며(RS-2022-00154720, Si-on-SiC 구조기반 차세대전력 반도체개발), 2021년 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행되었습니다(P0012451, 2021년 산업전문인력역량강화사업).

References

  1. J. Millan, P. Godignon, X. Perpina, A.P. Tomas and J. Rebollo, "A survey of wide bandgap power semiconductor devices", IEEE Trans. Power Electron. 29 (2014) 2155.
  2. X. She, A.Q. Huang, O. Lucia and B. Ozpineci, "Review of silicon carbide power devices and their applications", IEEE Trans. Ind. Electron. 64 (2017) 8193.
  3. K. Tachiki, M. Kaneko and T. Kimoto, "Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation", Appl. Phys. Express 14(3) (2021) 03100.
  4. T. Kobayashi, T. Okuda, K. Tachiki, K. Ito, Y. Matsushita and T. Kimoto, "Design and formation of SiC (0001)/SiO2 interfaces via Si deposition followed by low-temperature oxidation and high-temperature nitridation", Appl. Phys. Express 13 (2020) 091003.
  5. J.P. Henning, K.J. Schoen, M.R. Melloch, J.M. Woodall and J.A. Cooper, "Electrical characteristics of rectifying polycrystalline silicon/silicon carbide heterojunctions", J. Electron. Mater. 27 (1998) 296.
  6. S. Nishida, J. Liang, T. Hayashi, M. Arai and N. Shigekawa, "Correlation between the electrical properties of p-Si/n-4H-SiC junctions and concentrations of acceptors in Si", Jpn. J. Appl. Phys. 54 (2015) 030210.
  7. N. Shigekawa, S. Shimizu, J. Liang, M. Shingo, K. Shiojima and M. Arai, "Transport characteristics of minority electrons across surface-activated-bonding based p-Si/n-4H-SiC heterointerfaces", Jpn. J. Appl. Phys. 57 (2018) 02BE04.
  8. L. Li, Z. Chen, W. Liu and W. Li, "Electrical and photoelectric properties of p-Si/n+- 6H-SiC heterojunction non-ultraviolet photodiode", Electron. Lett. 48 (2012) 1227.
  9. F. Triendl, G. Pfusterschmied, S. Schwarz, W. Artner and U. Schmid, "Si/4H-SiC heterostructure formation using metal-induced crystallization", Mater. Sci. Semi-cond. Process. 128 (2021) 105763.
  10. A. Perez-Tomas, M.R. Jennings, M. Davis, J.A. Covington, P.A. Mawby, V. Shah and T. Grasby, "Characterization and modeling of n-n Si/Si C heterojunction diodes", J. Appl. Phys. 102 (2007) 014505.
  11. C. Yang, Z. Chen, J. Hu, Z. Ren an d S. Lin, "The epitaxial growth of (111) oriented monocrystalline Si film based on a 4:5 Si-to-SiC atomic lattice matching interface", Mater. Res. Bull. 47 (2012) 1331.
  12. L. Xie, Z. Chen, L. Li, C. Yang, X. He and N. Ye, "Preferential growth of Si films on 6H-SiC(0001) C-face", Appl. Surf. Sci. 261 (2012) 88.
  13. S. Fan, Z. Chen, X. He and L. Li, "First-principles study on Si(-220)/6H-SiC(0001) interface", Solid State Commun. 177 (2014) 20.
  14. Jr, R.H. Wentorf and J.S. Kasper,"Two new forms of silicon", Science 139 (1963) 338.
  15. B.R. Wu, "First-principles study on the high-pressure behavior of the zone-center modes of lonsdaleite silicon", Phys. Rev. B 61 (2000) 5.
  16. S.Q. Wang and H.Q. Ye, "First-principles study on the lonsdaleite phases of C, Si and Ge", J. Phys.: Condens. Matter 15 (2003) L197.
  17. A. Fissel, E. Bugiel, C.R. Wang and H.J. Osten, "Formation of twinning-superlattice regions by artificial stacking of Si layers", J. Cryst. Growth 290 (2006) 392.
  18. H.I.T. Hauge, M.A. Verheijen, S. Conesa-Boj, T. Etzelstorfe, M. Watzinger, D. Kriegner, I. Zardo, C. Fasolato, F. Capitani, P. Postorino, S. Kolling, A. Li, S. Assali, J. Stangl and E.P.A.M. Bakkers, "Hexagonal silicon realized", Nano Lett. 15 (9) (2015) 5855.
  19. F. Fabbri, E. Rotunno, L. Lazzarini, N. Fukata and G. Salviati, "Visible and infra-red light emission in Boron-doped wurtzite silicon nanowires", Sci. Rep. 49 (2014) 3603.
  20. M. Amato, T. Kaewmaraya, A. Zobelli, M. Palummo and R. Rurali, "Crystal phase effects in Si nanowire polytypes and their homojunctions", Nano Lett. 16 (2016) 5694.
  21. T.-H. Cheng, Y. Chu-Su, C.-S. Liu and C.-W. Lin, "Phonon-assisted transient electroluminescence in Si", Appl. Phys. Lett. 104 (2014) 261102.
  22. K.P. Homewood and M.A. Lourenco, "Light from Si via dislocation loops", Materials Today 8 (2005) 34.
  23. J.J. Wierer Jr, A. David and M.M. Megans, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency", Nature Photon. 3 (2009) 163.
  24. P.R. Tavernier, E.V. Etzkorn, Y. Wang and D.R. Clarke, "Two-step growth of high-quality GaN by hydride vapor-phase epitaxy", Appl. Phys. Lett. 77 (2000) 1804.
  25. T. Paskova, E.M. Goldys, R. Yakimova, E.B. Svedberg, A. Henry and B. Monemar, "Influence of growth rate on the structure of thick GaN layers grown by HVPE", J. Crystal Growth 208 (2000) 18.
  26. H.S. Ahn, K.H. Kim, M. Yang, J.Y. Yi, H.J. Lee, J.H. Chang, H.S. Kim, S.W. Kim, S.C. Lee, Y. Honda, M. Yamaguchi and N. Sawaki, "Characterization of AlGaN layer with high Al content grown by mixed-source HVPE", Phys. Stat. Sol. (a) 202 (2005) 1048.
  27. K.H. Kim, G.S. Lee, H.S. Ahn, I. Jeon, C.R. Cho, S. Lee and S.W. Kim, "Characterization of epilayers in vertical light-emitting diode grown by mixed-source hydride vapor phase epitaxy", New Phys.: Sae Mulli 70 (2020) 315.
  28. Z. He, J.L. Maurice, Q. Lia and D. Pribatb, "Direct evidence of 2H hexagonal Si in Si nanowires", Nanoscale 11 (2019) 4846.
  29. H. Olijnyk, S. Sikka and W. Holzapfel, "Structural phase transitions in Si and Ge under pressures up to 50 GPa", Phys. Lett. A 103 (1984) 137.
  30. C.C. Yang, J.C. Li and Q. Jiang, "Temperature-pressure phase diagram of silicon determined by Clapeyron equation", Solid State Comm. 129 (2004) 437.
  31. F.J. Lopez, U. Givan, J.G. Connell and L.J. Lauhon, "Silicon nanowire polytypes: Identification by Raman spectroscopy, generation mechanism, and misfit strain in homostructures", ACS Nano 5 (11) (2011) 8958.
  32. C. Raffy, J. Furthmuller and F. Bechstedt, "Properties of hexagonal polytypes of group-IV elements from first principles calculations", Phys. Rev. B 66 (2002) 075201.
  33. J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton and G.S. Pawley, "Reversible pressure-induced structural transitions between metastable phases of silicon", Phys. Rev. B 50 (1994) 13043.
  34. G. Lucazeau and L. Abello, "Micro-Raman analysis of residual stresses and phase transformations in crystalline silicon under microindentation", J. Mater. Res. 12 (1997) 2262.
  35. S. Piscanec, M. Cantoro, A.C. Ferrari, J.A. Zapien, Y. Lifshitz, S.T. Lee, S. Hofmann and J. Robertson, "Raman spectroscopy of silicon nanowires", Phys. Rev. B 68, (2003) 241312.
  36. Y.X. Zhang, R.K. Kang, D.M. Guo and Z.J. Jin, "Raman microspectroscopy study on the ground surface of monocrystalline silicon wafers", Key Eng. Mater. 304-305 (2006) 241.
  37. H. Jian, M. Dayan and Xu. Kewei, "Growth and morphology modulation of needle-like silicon nanowires for SERS application", Rare Metal Mater. Eng. 44(11) (2015) 2692.
  38. C. Fasolato, M. Luca, D. Djomani, L. Vincent, C. Renard, G. Iorio, V. Paillard, M. Amato, R. Rurali and I. Zardo, "Crystalline, phononic, and electronic properties of heterostructured polytypic Ge nanowires by Raman spectroscopy", Nano Lett. 18 (2018) 7075.
  39. S. Nakashima an d H. Harima, "Raman in vestigation of SiC polytypes", Phys. Stat. Sol. (a) 162 (1997) 39.
  40. A.A. Lebedev, G.A. Oganesyan, V.V. Kozlovski, I.A. Eliseyev and P.V. Bulat, "Radiation Defects in Hetero-structures 3C-SiC/4H-SiC", Crystals 9 (2019) 115.