DOI QR코드

DOI QR Code

Comparative study on absorbable periodontal tissue regeneration barrier membranes

흡수성 치주조직 재생 차폐막에 대한 비교연구

  • Youngchae Cho (Department of Biomedical Engineering, Daelim University) ;
  • Dayeon Jeong (Department of Biomedical Engineering, Daelim University) ;
  • Deuk Yong Lee (Department of Biomedical Engineering, Daelim University)
  • 조영채 (대림대학교 보건의료공학과) ;
  • 정다연 (대림대학교 보건의료공학과) ;
  • 이득용 (대림대학교 보건의료공학과)
  • Received : 2023.03.09
  • Accepted : 2023.03.22
  • Published : 2023.04.30

Abstract

Absorbable periodontal tissue regeneration barrier membranes (total 6; domestic 4; import 2) were comparatively analyzed. In the case of the xenograft barrier membrane, the collagen product had excellent tensile strength but low strain, and the porcine pericardial membrane had good mechanical properties, but its thickness was too thick to control. The synthetic PLLA membrane manufactured by the electrospinning had a relatively low water absorption capacity. However, the hybrid barrier membrane was able to control mechanical properties and biocompatibility through proper mixing of synthetic polymer and natural polymer. DA02 (PLLA/gelatin), a newly developed hybrid absorbable periodontal tissue regeneration membrane that is entirely dependent on imports, can be applied to an absorbable periodontal tissue regeneration barrier membrane due to suitable mechanical properties and biocompatibility.

흡수성 치주조직 재생유도재(국내 4개, 국외 2개) 총 6개 제품을 비교 연구하였다. 이종소재 차폐막의 경우, 콜라겐 제품은 우수한 기계적 강도를 보였으나 연신율이 작았다. 돼지심막은 우수한 기계적 물성에도 불구하고 두꺼운 두께로 사용에 제약이 되었다. 전기방사법으로 제조한 독일 PLLA/콜라겐 하이브리드형 복합 차폐막은 강도값과 흡수도는 낮았지만, 합성 및 천연고분자를 적절히 혼합함으로써 원하는 특성의 기계적 물성과 생체적합성 구현이 가능하였다. 본 연구에서 DA02(PLLA/젤라틴) 하이브리드형 복합고분자 소재는 기계적 물성과 생체적합성이 적절하여 100 % 수입에 의존하는 하이브리드형 흡수성 치주조직 재생 차폐막에 적용이 가능하였다.

Keywords

Acknowledgement

본 연구는 경기도형 연구자 중심의 R&D지원(과제번호 #2022-022)에 의해 수행되었습니다. 상용 시편을 공급해주신 (주)리뉴메디칼에 감사드립니다.

References

  1. C. Xu, C. Lei, L. Meng, C. Wang and Y. Song, "Chitosan as a barrier membrane materials in peridontal tissue regeneration", J. Biomed. Mater. Res. Part B 100B(5) (2012) 1435. 
  2. D.Y. Lee, D. Kim, B. Kim, J.Y. Park and J. Lee, "Synthesis and characterization of biphasic calcium phosphate ceramics using a sponge coating method", J. Ceram. Pro. Res. 19(1) (2018) 15. 
  3. J. Kim, B.S. Kim, H.S. Jeong, T.K. Heo, S. Shin, J. Lee, Y.H. Shim and D.Y. Lee, "Effect of surface-treatment on flexibility and guided bone regeneration of titanium barrier membrane", J. Korean Cryst. Growth Cryst. Technol. 25(3) (2015) 98. 
  4. I.J.H. Barruebtis, E. Paladino, P. Szabo, S. Brozio, P.J. Hall, C.I. Oseghale, M.K. Passarelli, S.J. Moug, R.A. Black, C.G. Wilson, R. Zelko and D.A. Lamprou, "Electrospun collagen-based nanofibres: A sustainable material for improved antibiotic utilisation in tissue engineering applications", Int. J. Pharm. 531 (2017) 67. 
  5. H. Lu, H.H. Oh, N. Kawazoe, K. Yamagishi and G. Chen, "PLLA-collagen and PLLA-gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering", Sci. Technol. Adv. Mater. 13 (2012) 064210. 
  6. S. Yan, L. Xiaoqiang, L. Shuiping, W. Hongsheng and H. Chuanglong, "Fabrication and properties of PLLA-gelatin nanofibers by electrospinning", J. Appl. Polym. Sci. 117 (2010) 542. 
  7. Y. Song, B. Kim, D.H. Yang and D.Y. Lee, "Poly(ε-caprolactone)/gelatin nanofibrous scaffolds for wound dressing", Appl. Nanosci. 12 (2022) 3261. 
  8. H. Jeong, D.Y. Lee, D.H. Yang and Y. Song, "Mechanical and cell-adhesive properties of gelatin/polyvinyl alcohol hydrogels and their application in wound dressing", Macromol. Res. 30(4) (2022) 223. 
  9. D.Y. Lee, C. Chun, S. Son and Y. Kim, "Carboxymethyl cellulose/polyethylene glycol superabsorbent hydrogel crosslinked with citric acid", J. Korean Cyst. Growth Cryst. Technol. 32(3) (2022) 107. 
  10. R. Casasola, N.L. Thomas, A. Trybala and S. Georgiadou, "Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fiber morphology and diameter", Polym. 55 (2014) 4728. 
  11. N.S. Binulal, A. Natarajan, D. Menon, V.K. Bhaskaran, U. Mony and S.V. Nair, "PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering", J. Biomater. Sci. 25 (2014) 325. 
  12. L. Chasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M. Nasi-Esfahani and S. Ramakrishna, "Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve engineering", Biomater. 29 (2008) 4532. 
  13. J.P. Sitompul, R. Insyani, D. Prasetyo, H. Prajitno and H.W. Lee, "Improvement of properties of poly(L-lactic acid) through solution blending of biodegradable polymers", J. Eng. Technol. Sci. 48 (2016) 430. 
  14. M.R. Yusof, R. Shasudin, S. Zakaria, M.A.A. Hamid, F. Yalcinkaya, Y. Abdullah and N. Yacob, "Fabrication and characterization of carboxymethyl starch/poly(L-lactide) acid/β-tricalcium phosphate composite nanofibers via electrospinning", Polymers 11 (2019) 1468. 
  15. A. Abdal-hay, K.H. Hussein, L. Casettari, K.A. Khalil and A.S. Hamdy, "Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications", Mater. Sci. Eng. C 60 (2016) 143. 
  16. Y. Jeong and D.Y. Lee, "Mechanical properties and biocompability of electrospun poly(ε-caprolactone)/geltin scaffolds loaded with cellulose fibers", Polym. Korea 46 (2022) 837. 
  17. Y. Jang, Y. Jeong D.Y. Lee, "Double-layer wound dressing consisting of an upper layer of robust polyurethane/ polycaprolactone and a lower layer of biodegradable polycaprolactone/gelatin/cellulose", Polym. Korea 47 (2023) 151.