DOI QR코드

DOI QR Code

Compressive and tensile strength behaviors of sand reinforced with fibers and natural Para rubber

  • Sommart Swasdi (Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Srivijaya) ;
  • Arsit Iyaruk (Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Srivijaya) ;
  • Panu Promputtangkoon (Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Srivijaya) ;
  • Arun, Lukjan (Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Srivijaya)
  • Received : 2021.09.17
  • Accepted : 2023.01.12
  • Published : 2023.02.25

Abstract

This study aimed to investigate the engineering properties and mechanical behaviors of polymer-fibers treated sand. Para rubber (PR), natural fiber (NF), and geosynthetic fiber (GF) were used to reinforce poorly graded sand. A series of unconfined compressive and splitting tensile strength tests were performed to analyze the engineering behaviors and strength enhancement mechanism. The experiment results indicated that the PR-fibers mixture could firmly enhance the strength properties of sand. The stress-strain characteristics and failure patterns have been changed due to the increase of PR and fibers content. The presence of PR and fibers strengthened the sand and enhanced the stiffness and ductility behavior of the mixture. The stiffness of reinforced sand reaches an optimum state when both NF and GF are 0.5%, while the optimum PR contents are 20% and 22.5% for the mixture with NF and GF, respectively. An addition of PR and fiber into sand contributed to increasing interlocking zone and bonding of PR-sand interfacial.

Keywords

Acknowledgement

The authors gratefully acknowledge the Faculty of Engineering, the Rajamangala University of Technology Srivijaya (RUTS) for providing laboratory facilities in this study. Special thanks to my students, namely Mr. Khachornkiat Phengnoo, Mr. Sittichai Eiadphanwan, and Ms. Thunyarat Khamkong for their help during laboratory testing.

References

  1. Ahmad, F., Bateni, F. and Azmi, M. (2010), "Performance evaluation of silty sand reinforced with fibers", Geotext. Geomembranes., 28, 93-99. https://doi.org/10.1016/j.geotexmem.2009.09.017.
  2. Anagnostopoulos, C.A., Papaliangas, T.T., Konstantinidis, D. and Patronis, C. (2013), "Shear strength of sands reinforced with polypropylene fibers", Geotech. Geol. Eng., 31, 401-423. https://doi.org/10.1007/s10706-012-9593-3.
  3. Armaghani, D.J., Mirzaei, F., Toghroli, A. and Shariati, A. (2020), "Indirect measure of shear strength parameters of fiber-reinforced sandy soil using laboratory tests and intelligent systems", Geomech. Eng., 22(5), 397-414. https://doi.org/10.12989/gae.2020.22.5.397.
  4. ASTM D 2166. (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, USA.
  5. ASTM C 496. (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  6. Bahrami, M. and Marandi, S.M. (2020), "Effect of strain level on strength evaluation of date palm fiber-reinforced sand", Geomech. Eng., 21(4), 327-336. http://dx.doi.org/10.12989/gae.2020.21.
  7. Banjongkliang, E., Wattanachai, P. and Parichatprecha, R. (2015), "Evaluation of strength and microstructure of adobe stabilized with blended rubber latex and sodium silicate", Kasetsart J. Nat. Sci., 49, 288-300.
  8. Behzadipour, H. and Sadrekarimi, A. (2021), "Biochar-assisted bio-cementation of a sand using native bacteria" , Bull Eng. Geol. Environ., 80, 4967-4984. https://doi.org/10.1007/s10064-021-02235-0.
  9. Burbank, M.B., Weaver, T.J., Green, T.L., Williams, B.C. and Crawford, R.L. (2011), "Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils", Geomicrobiol. J., 28, 301-312. https://doi.org/10.1080/01490451.2010.499929.
  10. Buritatun, A., Takaikaew, T., Horpibulsuk., Udomchai, A., Hoy, M., Vichitcholchai, N. and Arulrajah, A. (2020), "Mechanical strength improvement of cement-stabilized soil using natural rubber latex for pavement base applications", J. Mater. Civ. Eng., 32(12), https://doi.org/10.1061/(ASCE)MT.1943-5533.0003471.
  11. Cabalar, A.F. and Demir, S. (2020), "Fall-cone testing of different size/shape sands treated with a biopolymer", Geomech. Eng., 22(5), 441-448. https://doi.org/10.12989/gae.2020.22.5.441.
  12. Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. (2015a), "Soil treatment using microbial biopolymers for anti-desertification purposes", Geoderma, 253, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.
  13. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015b), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
  14. Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
  15. Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotech., 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
  16. Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Transp. Geotech., 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385.
  17. Consoli, N.C., de Moraes, R.R. and Festugato, L. (2011), "Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils", Geosynth. Int., 18(2), 57-62. https://doi.org/10.1680/gein.2011.18.2.57.
  18. DH-S 203/2556. (2013), Standard of Cement Modified Crushed Rock Base, Department of Highway Standard, Bangkok, Thailand.
  19. DH-S 204/2564. (2021), Standard of Soil Cement Base, Department of Highway Standard, Bangkok, Thailand.
  20. DH-S 206/2564. (2021), Standard of Soil Cement Subbase, Department of Highway Standard, Bangkok, Thailand.
  21. Duan, X-L. and Zhang, J-S. (2019), "Mechanical properties, failure mode, and microstructure of soil-cement modified with fly ash and polypropylene fiber", Adv. Mater. Sci. Eng., 9561794. https://doi.org/10.1155/2019/9561794.
  22. Ham, S.M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron. Eng., 144(7). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
  23. Hatibu, N. and Hettiaratchi, D.R.P. (1993), "The transition from ductile flow to brittle failure in unsaturated soils", J. Agric. Eng. Res., 54(4), 319-328. https://doi.org/ 10.1006/jaer.1993.1024.
  24. Hayashi, Y. (2009), "Production of natural rubber from Para rubber tree", Plant Biotechnol. J., 26(1), 67-70. https://doi.org/10.5511/plantbiotechnology.26.67.
  25. He, S., Wang, X., Bai, H., Xu, Z. and Ma, D. (2021), "Effect of fiber dispersion, content and aspect ratio on tensile strength of PP fiber reinforced soil", J. Mater. Res. Tech., 15, 1613-1621. https://doi.org/10.1016/j.jmrt.2021.08.128.
  26. Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. and Zadhoush, A. (2012), "A simple review of soil reinforcement by using natural and synthetic fibers", Constr. Build. Mater., 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
  27. Iyaruk, A., Promputthangkoon, P. and Lukjan, A. (2022), "Evaluating the performance of lateritic soil stabilized with cement and biomass bottom ash for use as pavement materials", Infrast., 7(66), https://doi.org/10.3390/infrastructures7050066.
  28. Jamellodin, Z, Talib, Z.A., Kolop, R. and Noor, N.M. (2010), "The effect of oil palm fibre on strength behaviour of soil", Proceedings of the 3rd Southeast Asian Natural Resources and Environmental Management (SANREM) Conference, Kota Kinabalu, Sabah, Malaysia, August.
  29. Kavazanjian, E., Iglesias, E. and Karatas, I. (2009), "Biopolymersoil stabilization for wind erosion control", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, October.
  30. Kererat, C., Kroehong, W., Thaipum, S. and Chindaprasirt, P. (2022), "Bottom ash stabilized with cement and para rubber latex for road base applications", Case Stud. Constr. Mater., 17, e01259. https://doi.org/10.1016/j.cscm.2022.e01259.
  31. Khatami, H. and O'Kelly, B.C. (2018), "Prevention of bleeding of particulate grouts using biopolymers", Constr. Build. Mater., 192, 202-209. https://doi.org/10.1016/j.conbuildmat.2018.10.131.
  32. Kolay, P.K. and Dhakal, B. (2020), "Geotechnical properties and microstructure of liquid polymer amended fine-grained soils", Geotech. Geol. Eng., 38, 2479-2491. https://doi.org/10.1007/s10706-019-01163-x.
  33. Kurugodu, H., Bordoloi, S., Hong, Y., Garg, A., Garg, A., Sreedeep, S. and Gandomi, A. (2018), "Genetic programming for soil-fiber composite assessment", Adv. Eng. Soft., 122, 50-61. https://doi.org/10.1016/j.advengsoft.2018.04.004.
  34. Kutanaei, S.S. and Choobbasti. A.J. (2017), "The effects of nanosilica particle and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand", J. Mater. Civ. Eng., 29(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001761.
  35. Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotech. Lett., 10, 1-7. https://doi.org/10.1680/jgele.19.00106.
  36. Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
  37. Liu, J., Bai, Y., Song, Z., Wang, Y., Chen, Z., Wang, Q., Kanungo, D.P. and Qian, W. (2012), "Effect of basalt fiber on the strength properties of polymer reinforced sand", Fibers. Polym., 19, 2372-2387. https://doi.org/10.1007/s12221-018-8507-2.
  38. Liu, J., Wang, Y., Kanungo, D.P., Wei, J., Bai, Y., Li, D., Song, Z. and Lu, Y. (2019), "Study on the brittleness characteristics of sand reinforced with polypropylene fiber and polyurethane organic polymer", Fibers Polym., 20, 620-632. https://doi.org/10.1007/s12221-019-8779-1.
  39. Liu, J., Bai, Y., Song, Z., Kanungo, D.P., Wang, Y., Bu, F., Chen, Z. and Shi, X. (2020), "Stabilization of sand using different types of short fibers and organic polymer", Constr. Build. Mater., 253, 119164. https://doi.org/10.1016/j.conbuildmat.2020.119164.
  40. Lukjan, A., Iyaruk, A., Swasdi, S. and Somboon, C. (2018), "Shear strength characteristics of the natural rubber bonded sand", Eng. J. Res. Dev., 29(4), 5-18. (in Thai)
  41. Lukjan, A., Iyaruk, A. and Somboon, C. (2020), "Soil water retention curve and permeability function of the Para rubber biopolymer treated sand", Interdiscip, Res. Rev., 15(5), 1-7.
  42. Lv, Z., Yang, Z., Zhou, H. and Zhang, S. (2019), "Mechanical behavior of cemented sand reinforced with different polymer fibers", Adv. Mater. Sci. Eng., 19, 8649619. https://doi.org/10.1155/2019/8649619.
  43. Paotong, P., Jaritngam, S. and Taneerananon, P. (2020), Use of natural rubber latex (NRL) in improving properties of reclaimed asphalt pavement (RAP)", Eng. J., 24(2), 53-62. https://doi.org/10.4186/ej.2020.24.2.53.
  44. Park, S.S. (2011), "Unconfined compressive strength and ductility of fiber-reinforced cemented sand", Constr. Build. Mater., 25(2), 1134-1138. https://doi.org/10.1016/j.conbuildmat.2010.07.017.
  45. Pradhan, P.K., Kar, R.K. and Naik, A. (2012), "Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil", Geotech. Geol. Eng., 30, 15-25. https://doi.org/10.1007/s10706-011-9445-6.
  46. Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2016), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785.
  47. Rezaeimalek, S., Nasouri, R., Huang, J. and Sazzad, B-S. (2018), "Curing method and mix design evaluation of a styrene-acrylic based liquid polymer for sand and clay stabilization", J. Mater. Civ. Eng., 30(9), 04018200. https://doi.org/10.1061/(asce)mt.1943-5533.0002396.
  48. Safdar, M., Newson, T., Schmidt, C., Sato, K., Fujikawa, T. and Shah, F. (2021), "Shear wave velocity of fiber reinforced cemented Toyoura silty sand", Geomech. Eng., 25(3), 207-219. http://dx.doi.org/10.12989/gae.2021.25.3.207.
  49. Smitha, S., Rangaswamy, K. and Keerthi, D.S. (2021), "Triaxial test behaviour of silty sands treated with agar biopolymer", Inter. J. Geotech. Eng., 15(4), 484-495. https://doi:10.1080/19386362.2019.1679441.
  50. Sonmezer, Y.B. (2019), "Investigation of the liquefaction potential of fiber-reinforced sand", Geomech. Eng., 18(5), 503-513. https://doi.org/10.12989/gae.2019.18.5.503.
  51. Tuntiworawit, N., Lavansiri, D. and Phromsorn, C. (2005), "The modification of asphalt with natural rubber latex", J. East. Asia Soc. Transp. Studies., 5, 679-694.
  52. Wei, J., Kong, F., Liu, J., Chen, Z., Kanungo, D.P., Lan, X., Jiang, C. and Shi, X. (2018), "Effect of sisal fiber and polyurethane admixture on the strength and mechanical behavior of sand", Polym., 10, 1121. https://doi.org/10.3390/polym10101121.
  53. Zhang, Z., Zhu, W., Zhang, J. and Tian, T. (2015), "Highly toughened poly (acrylonitrile styrene acrylic)/chlorinated polyethylene blends: mechanical, rheological and thermal properties", Polym. Test., 44, 23-29. https://doi.org/10.1016/j.polymertesting.2015.03.017.