DOI QR코드

DOI QR Code

PM 관측을 위한 스파르탄 시스템

Introducing SPARTAN Instrument System for PM Analysis

  • 엄수진 (울산과학기술원 도시환경공학과) ;
  • 박상서 (울산과학기술원 도시환경공학과) ;
  • 김준 (연세대학교 대기과학과) ;
  • 이서영 (연세대학교 대기과학과) ;
  • 조예슬 (연세대학교 대기과학과) ;
  • 이승재 (울산과학기술원 도시환경공학과) ;
  • Sujin Eom (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Sang Seo Park (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jhoon Kim (Department of Atmospheric Sciences, Yonsei University) ;
  • Seoyoung Lee (Department of Atmospheric Sciences, Yonsei University) ;
  • Yeseul Cho (Department of Atmospheric Sciences, Yonsei University) ;
  • Seungjae Lee (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Ehsan Parsa Javid (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2023.01.06
  • 심사 : 2023.02.19
  • 발행 : 2023.05.31

초록

As the need for PM type observation increases, Surface Particulate Matter Network (SPARTAN), PM samplers analyzes aerosol samples for PM mass concentration and chemical composition, were recently installed at two sites: Yonsei University at Seoul and Ulsan Institute of Science and Technology (UNIST) at Ulsan. These SPARTAN filter samplers and nephelometers provide the PM2.5 mass concentration and chemical speciation data with aerosol type information. We introduced the overall information and installation of SPARTAN at the field site in this study. After installation and observation, both Seoul and Ulsan sites showed a similar time series pattern with the daily PM2.5 mass concentration of SPARTAN and the data of Airkorea. In particular, in the case of high concentrations of fine particles, daily average value of PM2.5 was relatively well-matched. During the Yonsei University observation period, high concentrations were displayed in the order of sulfate, black carbon (BC), ammonium, and calcium ions on most measurement days. The case in which the concentration of nitrate ions showed significant value was confirmed as the period during which the fine dust alert was issued. From the data analysis, SPARTAN data can be analyzed in conjunction with the existing urban monitoring network, and it is expected to have a synergetic effect in the research field. Additionally, the possibility of being analyzed with optical data such as AERONET is presented. In addition, the method of installing and operating SPARTAN has been described in detail, which is expected to help set the stage for the observation system in the future.

키워드

과제정보

본 연구는 한국연구재단 신진연구과제(NRF-2020R1C1C1013628) 및 울산과학기술원 연구과제(No. 1.190139.01)의 지원으로 수행되었습니다. 또한 본 스파르탄 자료 분석 지원을 해준 워싱턴 대학(Washington University)의 SPARTAN 그룹에 감사드립니다(We thanks to Crystal Weagle, Brenna Walsh, Chris Oxford, Xuan Liu and Randall Martin to support and analyze the data).

참고문헌

  1. Ahern, A. T., F. Erdesz, N. L. Wagner, C. A. Brock, M. Lyu, K. Slovacek, R. H. Moore, E. B. Wiggins, and D. M. Murphy, 2022: Laser imaging nephelometer for aircraft deployment. Atmos. Meas. Tech., 15, 1093-1105, doi:10.5194/amt-15-1093-2022.
  2. Charlson, R. J., N. C. Ahlquist, H. Selvidge, and P. B. MacCready Jr., 1969: Monitoring of Atmospheric Aerosol Parameters with the Integrating Nephelometer. J. Air Pollut. Control Assoc., 19, 937-942, doi:10.1080/00022470.1969.10469360.
  3. Costa, S., and Coauthors, 2014: Integrating Health on Air Quality Assessment-Review Report on Health Risks of Two Major European Outdoor Air Pollutants: PM and NO2. J. Toxicol. Environ. Health, Part B, 17, 307-340, doi:10.1080/10937404.2014.946164.
  4. Dolgos, G., and J. V. Martins, 2014: Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering. Opt. Express, 22, 21972-21990, doi:10.1364/OE.22.021972.
  5. Fanizza, C., B. De Berardis, F. Ietto, M. E. Soggiu, R. Schiro, M. Inglessis, M. Ferdinandi, and F. Incoronato, 2018: Analysis of major pollutants and physicochemical characteristics of PM2.5 at an urban site in Rome. Sci. Total Environ., 616-617, 1457-1468, doi:10.1016/j.scitotenv.2017.10.168.
  6. Fenger, J., 1999: Urban air quality. Atmos. Environ., 33, 4877-4900, doi:10.1016/S1352-2310(99)00290-3.
  7. Holben, B. N., and Coauthors, 1998: AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ., 66, 1-16, doi:10.1016/S0034-4257(98)00031-5.
  8. Hsu, C.-Y., H.-C. Chiang, S.-L. Lin, M.-J. Chen, T.-Y. Lin, and Y.-C. Chen, 2016: Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Sci. Total Environ., 541, 1139-1150, doi:10.1016/j.scitotenv.2015.09.122.
  9. Kadowaki, S., 1986: On the nature of atmospheric oxidation processes of sulfur dioxide to sulfate and of nitrogen dioxide to nitrate on the basis of diurnal variations of sulfate, nitrate, and other pollutants in an urban area. Environ. Sci. Technol., 20, 1249-1253, doi:10.1021/es00154a009.
  10. KEI, 2013: A Study on the health impact and management policy of PM2.5 in Korea (II). Korea Environment Institute, 164 pp (in korean).
  11. Kim, J., S. C. Yoon, A. Jefferson, and S. W. Kim, 2005: Aerosol hygroscopic properties during Asian dust, pollution, and biomass burning episodes at Gosan, Korea in April 2001. Atmos. Environ., 40, 1550-1560, doi:10.1016/j.atmosenv.2005.10.044.
  12. Kim, K. W., Y. J. Kim, and S. J. Oh, 2001: Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea. Atmos. Environ., 35, 5157-5167, doi:10.1016/S1352-2310(01)00330-2.
  13. Kim, Y. J., K. W. Kim, S. D. Kim, B. K. Lee, and J. S. Han, 2006: Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmos. Environ., 40, 593-605, doi:10.1016/j.atmosenv.2005.11.076.
  14. Lee, H.-H., J. Y. Kim, S.-B. Lee, G.-N. Bae, and S. S. Yum, 2010: Urban Aerosol Number Concentration and Scattering Coefficient in Seoul, Korea, during Winter. Particle and Aerosol Res., 6, 91-103.
  15. Lee, M., 2014: An Analysis on the Concentration Characteristics of PM2.5 in Seoul, Korea from 2005 to 2012. Asia-Pac. J. Atmos. Sci., 50, 585-594, doi:10.1007/s13143-014-0048-z.
  16. Li, T., R. Hu, Z. Chen, Q. Li, S. Huang, Z. Zhu, and L.-F. Zhou, 2018: Fine particulate matter (PM2.5): The culprit for chronic lung diseases in China. Chronic Dis. Transl. Med., 4, 176-186, doi:10.1016/j.cdtm.2018.07.002.
  17. Lingjuan, W.-L., 2015: Insights to the formation of secondary inorganic PM2.5: Current knowledge and future needs. Int. J. Agric. Biol. Eng., 8, 1-13, doi:10.3965/j.ijabe.20150802.1810.
  18. Liu, X., J. R. Turner, J. L. Hand, B. A. Schichtel, and R. V. Martin, 2022: A global-scale mineral dust equation. J. Geophys. Res. Atmos., 127, doi:10.1029/2022JD036937.
  19. Matsumoto, K., and H. Tanaka, 1996: Formation and dissociation of atmospheric particulate nitrate and chloride: An approach based on phase equilibrium. Atmos. Environ., 30, 639-648, doi:10.1016/1352-2310(95)00290-1.
  20. McNeill, J., and Coauthors, 2020: Large global variations in measured airborne metal concentrations driven by anthropogenic sources. Sci. Rep., 10, 21817, doi:10.1038/s41598-020-78789-y.
  21. Nguyen, H. T., K.-H. Kim, and C. Park, 2015: Long-term trend of NO2 in major urban areas of Korea and possible consequences for health, Atmos. Environ., 106, 347-357, doi:10.1016/j.atmosenv.2015.02.003.
  22. Ni, T., P. Li, B. Han, Z. Bai, X. Ding, Q. Wang, and J. Huo, 2013: Spatial and temporal variation of chemical composition and mass closure of ambient PM10 in Tianjin, China. Aerosol Air Qual. Res., 13, 1832-1846, doi:10.4209/aaqr.2012.10.0283.
  23. Park, J.-S., S.-M. Park, I.-H. Song, H.-J. Shin, and Y.-D. Hong, 2015: Characteristics of visibility impairment by semi-continuous optical and chemical property monitoring of aerosols in Seoul. J. Korean Soc. Atmos., 31, 319-329, doi:10.5572/KOSAE.2015.31.4.319.
  24. Park, R. J., D. J. Jacob, M. Chin, and R. V. Martin, 2003: Sources of carbonaceous aerosols over the United States and implications for natural visibility. J. Geophys. Res., 108, 4355, doi:10.1029/2002JD003190.
  25. Pathak, R. K., X. Yao, and C. K. Chan, 2004: Sampling artifacts of acidity and ionic species in PM2.5. Environ. Sci. Technol., 38, 254-259, doi:10.1021/es0342244.
  26. Sheridan, P. J., and J. A. Ogren, 2006: TSI Model 3563 integrating nephelometer operations reference manual. National Oceanic and Atmospheric Administration, 15 pp.
  27. Snider, G., and Coauthors, 2015: SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmos. Meas. Tech., 8, 505-521, doi:10.5194/amt-8-505-2015, 2015.
  28. SPARTAN, 2021: SPARTAN SS5 Set-up Instructions, 14 pp (SPARTAN.PM25@gmail.com).
  29. Streets, D. G., F. Yan, M. Chin, T. Diehl, N. Mahowald, M. Schultz, M. Wild, Y. Wu, and C. Yu, 2009: Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980~2006. J. Geophys. Res., 114, doi:10.1029/2008JD011624.
  30. Zaman, S. U., M. Yesmin, Md. R. S. Pavel, F. Jeba, and A. Salam, 2021: Indoor air quality indicators and toxicity potential at the hospitals' environment in Dhaka, Bangladesh. Environ. Sci. Pollut. Res., 28, 37727-37740, doi:10.1007/s11356-021-13162-8.