DOI QR코드

DOI QR Code

Stability analysis of infinite rock slopes with varying disturbances based on the Hoek-Brown failure criterion

  • Dowon Park (Department of Civil Engineering, University of Seoul)
  • Received : 2022.11.25
  • Accepted : 2023.03.07
  • Published : 2023.04.25

Abstract

Rock disturbance caused by blasting and stress relaxation is commonly observed during excavation. As the distance from the source of disturbance increases, the degree of disturbance decreases, and rock at a large depth does not experience disturbance. However, in stability analyses, a single value of disturbance is often applied to the entire rock mass, which leads to underestimated results. In this study, this modeling mistake is addressed by considering realistically varying rock disturbance. The safety of infinite slopes in a disturbed rock mass with a strength governed by the Hoek-Brown failure criterion is investigated based on the kinematic approach of limit analysis. The maximum disturbance is assigned to the outermost slope face because it is directly exposed to blasting damage and dilation, and the disturbance progressively decays with distance in the rock mass. The safety analysis results indicate that the assumption of uniform disturbance in the entire rock mass leads to underestimation of the rock strength and safety on infinite rock slopes. A critical slip surface appears to be within the disturbed rock layer as well as the interface between the disturbed upper rock and undisturbed lower rock.

Keywords

Acknowledgement

This work was supported by the 2021 Research Fund of the University of Seoul.

References

  1. Balmer, G. (1952), "A general analysis solution for Mohr's envelope", Proc. ASTM, 52, 1260-1271.
  2. Cheng, Y., Song, Z., Song, W., Li, S., Yang, T., Zhang, Z., Wang, T. and Wang, K. (2021), "Strain performance and fracture response characteristics of hard rock under cyclic disturbance loading", Geomech. Eng., 26(6), 551-563. https://doi.org/10.12989/gae.2021.26.6.551.
  3. Chern, J., Yu, C. and Shiao, F. (1998), "Tunnelling in squeezing ground and support estimation", Proceedings of the Regional Symposium on Sedimentary Rock Engineering, Taipei.
  4. Chinaei, F., Ahangari, K. and Shirinabadi, R. (2021), "Hoek-Brown failure criterion for damage analysis of tunnels subjected to blast load", Geomech. Eng., 26(1), 41-47. https://doi.org/10.12989/gae.2021.26.1.041.
  5. Das, B.M. (2021), Principles of Geotechnical Engineering. Cengage learning, Stamford, CT, USA.
  6. Dimitraki, L.S., Christaras, B.G. and Arampelos, N.D. (2021), "Investigation of blasting impact on limestone of varying quality using FEA", Geomech. Eng., 25(2), 111-121. https://doi.org/10.12989/gae.2021.25.2.111.
  7. Dong-ping, D., Liang, L., Jian-feng, W. and Lian-heng, Z. (2016), "Limit equilibrium method for rock slope stability analysis by using the Generalized Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 89, 176-184. https://doi.org/10.1016/j.ijrmms.2016.09.007.
  8. Duncan, J.M., Wright, S.G. and Brandon, T.L. (2014), Soil strength and slope stability. John Wiley & Sons, Hoboken, NJ, USA.
  9. Hoek, E. (1994), "Strength of rock and rock masses", ISRM News J., 2, 4-16.
  10. Hoek, E. (2012), "Blast damage factor D", Technical note for RocNews-February 2.
  11. Hoek, E. and Brown, E. (2019), "The Hoek-Brown failure criterion and GSI-2018 edition", J. Rock Mech. Geotech. Eng., 11(3), 445-463. https://doi.org/10.1016/j.jrmge.2018.08.001.
  12. Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Geoenviron. Eng., 106(9), 1013-1035. https://doi.org/10.1061/AJGEB6.0001029.
  13. Hoek, E. and Brown, E.T. (1988), "The Hoek-Brown failure criterion-a 1988 update", Proceedings of the 15th Can. Rock Mech. Symp., Toronto, Canada, October.
  14. Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
  15. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proceedings of NARMSTac, 1(1), 267-273.
  16. Hoek, E. and Karzulovic, A. (2000), "Rock mass properties for surface mines", Slope Stability in Surface Mining, Denver, CO, USA, Febrary.
  17. Hoek, E. and Marinos, P. (2007), "A brief history of the development of the Hoek-Brown failure criterion", Soils Rocks, 2(2), 2-13. https://doi.org/10.28927/SR.302085
  18. Hsu, S.C. and Nelson, P.P. (2006), "Material spatial variability and slope stability for weak rock masses", J. Geotech. Geoenviron. Eng., 132(2), 183-193. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(183).
  19. Kumar, P. (1998), "Shear failure envelope of Hoek-Brown criterion for rockmass", Tunn. Undergr. Sp. Technol., 13(4), 453-458. https://doi.org/10.1016/S0886-7798(98)00088-1.
  20. Kwon, S., Lee, C., Cho, S., Jeon, S. and Cho, W. (2009), "An investigation of the excavation damaged zone at the KAERI underground research tunnel", Tunn. Undergr. Sp. Technol., 24(1), 1-13. https://doi.org/10.1016/j.tust.2008.01.004.
  21. Lambe, T.W. and Whitman, R.V. (1969), Soil mechanics, John Wiley, New York, NY, USA.
  22. Li, A., Merifield, R. and Lyamin, A. (2011), "Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion", Comput. Geotech., 38(4), 546-558. https://doi.org/10.1016/j.compgeo.2011.03.003.
  23. Lupogo, K. (2017), "Characterization of blast damage in rock slopes: an integrated field-numerical modeling approach", Ph.D. Dissertation, Simon Fraser University, British Columbia.
  24. Michalowski, R.L. (2018), "Failure potential of infinite slopes in bonded soils with tensile strength cut-off", Can. Geotech. J., 55(4), 477-485. https://doi.org/10.1139/cgj-2017-0041.
  25. Michalowski, R.L. and Park, D. (2020), "Stability assessment of slopes in rock governed by the Hoek-Brown strength criterion", Int. J. Rock Mech. Min. Sci., 127, 104217. https://doi.org/10.1016/j.ijrmms.2020.104217.
  26. Park, D. and Michalowski, R.L. (2019), "Roof stability in deep rock tunnels", Int. J. Rock Mech. Min. Sci., 124, 104139. https://doi.org/10.1016/j.ijrmms.2019.104139.
  27. Park, D. and Michalowski, R.L. (2020), "Three-dimensional roof collapse analysis in circular tunnels in rock", Int. J. Rock Mech. Min. Sci., 128, 104275. https://doi.org/10.1016/j.ijrmms.2020.104275.
  28. Park, D. and Michalowski, R.L. (2021), "Three-dimensional stability assessment of slopes in intact rock governed by the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 137, 104522. https://doi.org/10.1016/j.ijrmms.2020.104522.
  29. Park, D. and Michalowski, R.L. (2022), "Roof stability in flat-ceiling deep rock cavities and tunnels", Eng. Geol., 303, 106651. https://doi.org/10.1016/j.enggeo.2022.106651.
  30. Qian, Z., Li, A.J., Lyamin, A. and Wang, C. (2017), "Parametric studies of disturbed rock slope stability based on finite element limit analysis methods", Comput. Geotech., 81, 155-166. https://doi.org/10.1016/j.compgeo.2016.08.012.
  31. Rafiei Renani, H., Martin, C.D., Varona, P. and Lorig, L. (2019), "Stability analysis of slopes with spatially variable strength properties", Rock Mech. Rock Eng., 52(10), 3791-3808. https://doi.org/10.1007/s00603-019-01828-2.
  32. Rankine, W.J.M. (1857), "II. On the stability of loose earth", Philos. T. Roy. Soc. London, 147, 9-27. https://doi.org/10.1098/rstl.1857.0003
  33. Rose, N., Scholz, M., Burden, J., King, M., Maggs, C. and Havaej, M. (2018), "Quantifying transitional rock mass disturbance in open pit slopes related to mining excavation", Proceedings of the 14th International Congress on Energy and Mineral Resources, Seville, Spain, April.
  34. Sakurai, S. (1984), "Displacement measurements associated with the design of underground openings", Field measurements in geomechanics. Zurich, Switzerland, September.
  35. Serrano, A., Olalla, C. and Manzanas, J. (2005), "Stability of highly fractured infinite rock slopes with nonlinear failure criteria and nonassociated flow laws", Can. Geotech. J., 42(2), 393-411. https://doi.org/10.1139/t04-087.
  36. Song, K.I., Cho, G.C. and Lee, S.W. (2011), "Effects of spatially variable weathered rock properties on tunnel behavior", Probabilist. Eng. Mech., 26(3), 413-426. https://doi.org/10.1016/j.probengmech.2010.11.010.
  37. Sonmez, H. and Ulusay, R. (1999), "Modifications to the geological strength index (GSI) and their applicability to stability of slopes", Int. J. Rock Mech. Min. Sci., 36(6), 743-760. https://doi.org/10.1016/S0148-9062(99)00043-1.
  38. Sun, C., Chai, J., Xu, Z., Qin, Y. and Chen, X. (2016), "Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique", Eng. Geol., 214, 94-106. https://doi.org/10.1016/j.enggeo.2016.09.017.
  39. Taylor, D.W. (1937), "Stability of earth slopes", J. Boston Soc. Civil Engineers, 24(3), 197-247.
  40. Yang, J., Dai, J., Yao, C., Jiang, S., Zhou, C. and Jiang, Q. (2020), "Estimation of rock mass properties in excavation damage zones of rock slopes based on the Hoek-Brown criterion and acoustic testing", Int. J. Rock Mech. Min. Sci., 126, 104192. https://doi.org/10.1016/j.ijrmms.2019.104192.
  41. Zaid, M., Sadique, M.R., Alam, M.M. and Samanta, M. (2020), "Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite", Geomech. Eng., 23(3), 245-259. https://doi.org/10.12989/gae.2020.23.3.245.
  42. Zheng, H., Li, T., Shen, J., Xu, C., Sun, H. and Lu, Q. (2018), "The effects of blast damage zone thickness on rock slope stability", Eng. Geol., 246, 19-27. https://doi.org/10.1016/j.enggeo.2018.09.021.