DOI QR코드

DOI QR Code

New energy partitioning method in essential work of fracture (EWF) concept for 3-D printed pristine/recycled HDPE blends

  • Sukjoon Na (Department of Civil Engineering, Marshall University) ;
  • Ahmet Oruc (Department of Civil Engineering, Marshall University) ;
  • Claire Fulks (Department of Civil Engineering, Marshall University) ;
  • Travis Adams (Department of Civil Engineering, Marshall University) ;
  • Dal Hyung Kim (Department of Mechanical Engineering, Kennesaw State University) ;
  • Sanghoon Lee (Department of Computer Sciences and Electrical Engineering, Marshall University) ;
  • Sungmin Youn (Department of Civil Engineering, Marshall University)
  • 투고 : 2022.11.10
  • 심사 : 2023.02.08
  • 발행 : 2023.04.25

초록

This study explores a new energy partitioning approach to determine the fracture toughness of 3-D printed pristine/recycled high density polyethylene (HDPE) blends employing the essential work of fracture (EWF) concept. The traditional EWF approach conducts a uniaxial tensile test with double-edge notched tensile (DENT) specimens and measures the total energy defined by the area under a load-displacement curve until failure. The approach assumes that the entire total energy contributes to the fracture process only. This assumption is generally true for extruded polymers that fracture occurs in a material body. In contrast to the traditional extrusion manufacturing process, the current 3-D printing technique employs fused deposition modeling (FDM) that produces layer-by-layer structured specimens. This type of specimen tends to include separation energy even after the complete failure of specimens when the fracture test is conducted. The separation is not relevant to the fracture process, and the raw experimental data are likely to possess random variation or noise during fracture testing. Therefore, the current EWF approach may not be suitable for the fracture characterization of 3-D printed specimens. This paper proposed a new energy partitioning approach to exclude the irrelevant energy of the specimens caused by their intrinsic structural issues. The approach determined the energy partitioning location based on experimental data and observations. Results prove that the new approach provided more consistent results with a higher coefficient of correlation.

키워드

과제정보

This research has been supported by a grant from the U.S. Environmental Protection Agency's (EPA) People, Prosperity and the Planet (P3) Student Design Competition program. The views expressed in this paper are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. The authors also gratefully acknowledge the Marshall University Molecular and Biological Imaging Center for the SEM part of the work, and we thank Michael L. Norton and David Neff for their training and assistance.

참고문헌

  1. American Chemistry Council (2022), PIPS Resin Sales and Production CY Figures, 2021 vs 2020 American Chemistry Council
  2. Aurrekoetxea, J., Sarrionandia, M.A., Urrutibeascoa, I. and Maspoch, M.L. (2001), "Effects of recycling on the microstructure and the mechanical properties of isotactic polypropylene", J. Mater. Sci., 36(11), 2607-2613. https://doi.org/10.1023/A:1017983907260.
  3. Broberg, K. (1968), "Critical review of some theories in fracture mechanics", Int. J. Fract. Mech., 4(1), 11-19. https://doi.org/10.1007/BF00189139.
  4. Broberg, K.B. (1971), "Crack-growth criteria and non-linear fracture mechanics", J. Mech. Phys. Solids, 19(6), 407-418. https://doi.org/10.1016/0022-5096(71)90008-1.
  5. Broberg, K.B. (1975), "On stable crack growth", J. Mech. Phys. Solids. 23(3), 215-237. https://doi.org/10.1016/0022-5096(75)90017-4.
  6. Chan, W.Y.F. and Williams, J.G. (1994), "Determination of the fracture toughness of polymeric films by the essential work method", Polymer, 35(8), 1666-1672. https://doi.org/10.1016/0032-3861(94)90840-0.
  7. Ching, E.C.Y., Poon, W.K.Y., Li, R.K.Y. and Mai, Y.W. (2000), "Effect of strain rate on the fracture toughness of some ductile polymers using the essential work of fracture (EWF) approach", Polymer Eng. Sci., 40(12), 2558-2568. https://doi.org/10.1002/pen.11386.
  8. Cotterell, B. and Reddel, J. (1977), "The essential work of plane stress ductile fracture", Int. J. Fracture. 13(3), 267-277. https://doi.org/10.1007/BF00040143.
  9. Ghadr, S., Mirsalehi, S. and Assadi Langroudi, A. (2019), "Compacted expansive elastic silt and tyre powder waste", Geomech. Eng., 18(5), 535-543. https://doi.org/10.12989/gae.2019.18.5.535.
  10. Gudadhe, A., Bachhar, N., Kumar, A., Andrade, P. and Kumaraswamy, G. (2019), "Three-Dimensional Printing with Waste High-Density Polyethylene", ACS Appl. Polymer Mater., 1(11), 3157-3164. https://doi.org/10.1021/acsapm.9b00813.
  11. Karger-Kocsis, J. and Ferrer-Balas, D. (2001), "On the plane-strain essential work of fracture of polymer sheets", Polymer Bull.. 46(6), 507-512. https://doi.org/10.1007/s002890170039.
  12. Komurlu, E., Kesimal, A. and Demir, S. (2016), "Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus", Geomech. Eng., 10(6), 775-791. http://dx.doi.org/10.12989/gae.2016.10.6.775.
  13. Kwon, H.J. and Jar, P.Y.B. (2007), "New energy partitioning approach to the measurement of plane-strain fracture toughness of high-density polyethylene based on the concept of essential work of fracture", Eng. Fract. Mech., 74(16), 2471-2480. https://doi.org/10.1016/j.engfracmech.2006.12.028.
  14. La Mantia, F.P. (1999), "Mechanical properties of recycled polymers", Macromol. Symposia, 147(1), 167-172. https://doi.org/10.1002/masy.19991470116.
  15. Levita, G., Parisi, L. and Marchetti, A. (1994), "The work of fracture in semiductile polymers", J. Mater. Sci., 29(17), 4545-4553. https://doi.org/10.1007/BF00376277.
  16. Liu, H., Yang, G., Wang, H. and Xiong, B. (2017), "A large-scale test of reinforced soil railway embankment with soilbag facing under dynamic loading", Geomech. Eng., 12(4), 579-593. https://doi.org/10.12989/gae.2017.12.4.579.
  17. Mai, Y.-W. and Cotterell, B. (1986), "On the essential work of ductile fracture in polymers", Int. J. Fracture, 32(2), 105-125. https://doi.org/10.1007/BF00019787.
  18. Mai, Y.W., Cotterell, B., Horlyck, R. and Vigna, G. (1987), "The essential work of plane stress ductile fracture of linear polyethylenes", Polymer Eng. Sci., 27(11), 804-809. https://doi.org/10.1002/pen.760271106.
  19. Mai, Y.W. and Pilko, K.M. (1979), "The essential work of plane stress ductile fracture of a strain-aged steel", J. Mater. Sci., 14(2), 386-394. https://doi.org/10.1007/BF00589830.
  20. Mai, Y.W. and Powell, P. (1991), "Essential work of fracture and j-integral measurements for ductile polymers", J. Polymer Sci. Part B: Polymer Phys., 29(7), 785-793. https://doi.org/10.1002/polb.1991.090290702.
  21. Maruvanchery, V. and Kim, E. (2019), "Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng., 17(1), 57-67. https://doi.org/10.12989/gae.2019.17.1.057.
  22. Mouzakis, D., Karger-Kocsis, J. and Moskala, E. (2000), "Interrelation between energy partitioned work of fracture parameters and the crack tip opening displacement in amorphous polyester films", J. Mater. Sci. Lett., 19(18), 1615-1619. https://doi.org/10.1023/A:1006797522901.
  23. Na, S., Nguyen, L., Spatari, S. and Hsuan, G.Y. (2016), "Evaluating the effect of nanoclay and recycled HDPE on stress cracking in HDPE using j-integral approach", ANTEC. Society of Plastic Engineers, Indianapolis.
  24. Na, S., Nguyen, L., Spatari, S. and Hsuan, Y.G. (2018), "Effects of recycled HDPE and nanoclay on stress cracking of HDPE by correlating Jc with slow crack growth", Polymer Eng. Sci., 58(9), 1471-1478. https://doi.org/10.1002/pen.24691.
  25. Na, S., Spatari, S. and Hsuan, Y.G. (2015), "Fracture characterization of pristine/post-consumer HDPE blends using the essential work of fracture (EWF) concept and extended finite element method (XFEM)", Eng. Fract. Mech., 139, 1-17. https://doi.org/10.1016/j.engfracmech.2015.02.026.
  26. Na, S., Spatari, S. and Hsuan, Y.G. (2016), "Fracture characterization of recycled high density polyethylene/nanoclay composites using the essential work of fracture concept", Polymer Eng. Sci., 56(2), 222-232. https://doi.org/10.1002/pen.24250.
  27. Paton, C.A. and Hashemi, S. (1992), "Plane-stress essential work of ductile fracture for polycarbonate", J. Mater. Sci., 27(9), 2279-2290. https://doi.org/10.1007/BF01105033.
  28. Pattanakul, C., Selke, S., Lai, C. and Miltz, J. (1991), "Properties of recycled high density polyethylene from milk bottles", J. Appl. Polymer Sci., 43(11), 2147-2150. https://doi.org/10.1002/app.1991.070431122.
  29. Schirmeister, C.G., Hees, T., Licht, E.H. and Mulhaupt, R. (2019), "3D printing of high density polyethylene by fused filament fabrication", Additive Manufact., 28, 152-159. https://doi.org/10.1016/j.addma.2019.05.003.
  30. Terzi, N.U., Erenson, C. and Selcuk, M.E. (2015), "Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations", Geomech. Eng., 9(4), 447-464. https://doi.org/10.12989/gae.2015.9.4.447.
  31. Usman, A., Sutanto, M.H., Napiah, M., Zoorob, S.E. and Al-Sabaeei, A.M. (2021), "Optimization of irradiated waste polyethylene terephthalate modified asphalt pavement using response surface methodology", Geomech. Eng., 26(6), 513-527. https://doi.org/10.12989/gae.2021.26.6.513.
  32. Williams, J.G. and Rink, M. (2007), "The standardisation of the EWF test", Eng. Fract. Mech., 74(7), 1009-1017. https://doi.org/10.1016/j.engfracmech.2006.12.017.
  33. Wu, J. and Mai, Y.-W. (1996), "The essential fracture work concept for toughness measurement of ductile polymers", Polymer Eng. Sci., 36(18), 2275-2288. https://doi.org/10.1002/pen.10626.
  34. Wu, J., Mai, Y.W. and Cotterell, B. (1993), "Fracture toughness and fracture mechanisms of PBT/PC/IM blend", J. Mater. Sci., 28(12), 3373-3384. https://doi.org/10.1007/BF00354261