DOI QR코드

DOI QR Code

MST1R as a potential new target antigen of chimeric antigen receptor T cells to treat solid tumors

  • Wen An (Department of Pharmacology & Clinical Pharmacology Lab, Hanyang University) ;
  • Ju-Seop Kang (Department of Pharmacology & Clinical Pharmacology Lab, Hanyang University) ;
  • Sukjoong Oh (Department of Internal Medicine, College of Medicine, Hanyang University) ;
  • Ang Tu (Department of Pharmacy, Xiantao Hospital of Traditional Chinese Medicine)
  • Received : 2023.01.05
  • Accepted : 2023.03.27
  • Published : 2023.05.01

Abstract

Although chimeric antigen receptor T cell (CAR-T) is a promising immunotherapy in hematological malignancies, there remain many obstacles to CART cell therapy for solid tumors. Identifying appropriate tumor-associated antigens (TAAs) is especially critical for success. Using a bioinformatics approach, we identified common potential TAAs for CAR-T cell immunotherapy in solid tumors. We used the GEO database as a training dataset to find differentially expressed genes (DEGs) and verified candidates using the TCGA database, obtaining seven common DEGs (HM13, SDC1, MST1R, HMMR, MIF, CD24, and PDIA4). Then, we used MERAV to analyze the expression of six genes in normal tissues to determine the ideal target genes. Finally, we analyzed tumor microenvironment factors. The results of major microenvironment factor analyses showed that MDSCs, CXCL1, CXCL12, CXCL5, CCL2, CCL5, TGF- β, CTLA-4, and IFN-γ were significantly overexpressed in breast cancer. The expression of MST1R was positively correlated with TGF- β, CTLA-4, and IFN-γ. In lung adenocarcinoma, MDSCs, Tregs, CXCL12, CXCL5, CCL2, PD-L1, CTLA-4, and IFN-γ were significantly overexpressed in tumor tissues. The expression of MST1R was positively correlated with TGF- β, CTLA-4, and IFN-γ. In bladder cancer, CXCL12, CCL2, and CXCL5 were significantly overexpressed in tumor tissues. MST1R expression was positively correlated with TGF- β. Our results demonstrate that MST1R has the potential as a new target antigen for treating breast cancer, lung adenocarcinoma, and bladder cancer and may be used as a progression indicator for bladder cancer.

Keywords

References

  1. Abramson JS. Anti-CD19 CAR T-cell therapy for B-cell Non-Hodgkin lymphoma. Transfus Med Rev. 2020;34:29-33. https://doi.org/10.1016/j.tmrv.2019.08.003
  2. Feng D, Sun J. Overview of anti-BCMA CAR-T immunotherapy for multiple myeloma and relapsed/refractory multiple myeloma. Scand J Immunol. 2020;92:e12910.
  3. Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128.
  4. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31:71-75. https://doi.org/10.1038/nbt.2459
  5. Xie Y, Hu Y, Zhou N, Yao C, Wu L, Liu L, Chen F. CAR T-cell therapy for triple-negative breast cancer: where we are. Cancer Lett. 2020;491:121-131. https://doi.org/10.1016/j.canlet.2020.07.044
  6. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
  7. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1-13. https://doi.org/10.1093/nar/gkn923
  8. Liu R, Guo CX, Zhou HH. Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen. Cancer Biol Ther. 2015;16:317-324. https://doi.org/10.1080/15384047.2014.1002360
  9. Shaul YD, Yuan B, Thiru P, Nutter-Upham A, McCallum S, Lanzkron C, Bell GW, Sabatini DM. MERAV: a tool for comparing gene expression across human tissues and cell types. Nucleic Acids Res. 2016;44:D560-D566. https://doi.org/10.1093/nar/gkv1337
  10. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, Bruneval P, Fridman WH, Becker C, Pages F, Speicher MR, Trajanoski Z, Galon J. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782-795. https://doi.org/10.1016/j.immuni.2013.10.003
  11. Sadelain M, Riviere I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3:35-45. https://doi.org/10.1038/nrc971
  12. Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE. Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther. 2010;10:77-90. https://doi.org/10.2174/156652310791111001
  13. Kershaw MH, Wang G, Westwood JA, Pachynski RK, Tiffany HL, Marincola FM, Wang E, Young HA, Murphy PM, Hwu P. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther. 2002;13:1971-1980. https://doi.org/10.1089/10430340260355374
  14. Wang G, Lu X, Dey P, Deng P, Wu CC, Jiang S, Fang Z, Zhao K, Konaparthi R, Hua S, Zhang J, Li-Ning-Tapia EM, Kapoor A, Wu CJ, Patel NB, Guo Z, Ramamoorthy V, Tieu TN, Heffernan T, Zhao D, et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 2016;6:80-95. https://doi.org/10.1158/2159-8290.CD-15-0224
  15. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, Teichmann SA, Janowitz T, Jodrell DI, Tuveson DA, Fearon DT. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110:20212-20217. https://doi.org/10.1073/pnas.1320318110
  16. Marcuzzi E, Angioni R, Molon B, Cali B. Chemokines and chemokine receptors: orchestrating tumor metastasization. Int J Mol Sci. 2018;20:96. Erratum in: Int J Mol Sci. 2019;20:2651. https://doi.org/10.3390/ijms20010096
  17. Xia AL, Wang XC, Lu YJ, Lu XJ, Sun B. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget. 2017;8:90521-90531. https://doi.org/10.18632/oncotarget.19361
  18. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69.
  19. Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z, Qian Q. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15:2548-2560. https://doi.org/10.7150/ijbs.34213
  20. Alizadeh D, Wong RA, Gholamin S, Maker M, Aftabizadeh M, Yang X, Pecoraro JR, Jeppson JD, Wang D, Aguilar B, Starr R, Larmonier CB, Larmonier N, Chen MH, Wu X, Ribas A, Badie B, Forman SJ, Brown CE. IFNγ is critical for CAR T cell-mediated myeloid activation and induction of endogenous immunity. Cancer Discov. 2021;11:2248-2265. https://doi.org/10.1158/2159-8290.CD-20-1661
  21. Li AM, Hucks GE, Dinofia AM, Seif AE, Teachey DT, Baniewicz D, Callahan C, Fasano C, McBride B, Gonzalez V, Nazimuddin F, Porter DL, Lacey SF, June CH, Grupp SA, Maude SL. Checkpoint inhibitors augment CD19-directed chimeric antigen receptor (CAR) T cell therapy in relapsed B-cell acute lymphoblastic leukemia. Blood. 2018;132(Suppl 1):556.
  22. Koehler H, Kofler D, Hombach A, Abken H. CD28 costimulation overcomes transforming growth factor-beta-mediated repression of proliferation of redirected human CD4+ and CD8+ T cells in an antitumor cell attack. Cancer Res. 2007;67:2265-2273. https://doi.org/10.1158/0008-5472.CAN-06-2098
  23. Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G, Brenner MK. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia. 2006;20:1819-1828. https://doi.org/10.1038/sj.leu.2404366
  24. Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, Riddell SR. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res. 2013;19:3153-3164. https://doi.org/10.1158/1078-0432.CCR-13-0330
  25. Duan Y, Chen R, Huang Y, Meng X, Chen J, Liao C, Tang Y, Zhou C, Gao X, Sun J. Tuning the ignition of CAR: optimizing the affinity of scFv to improve CAR-T therapy. Cell Mol Life Sci. 2021;79:14.
  26. Feng Y, Liu X, Li X, Zhou Y, Song Z, Zhang J, Shi B, Wang J. Novel BCMA-OR-CD38 tandem-dual chimeric antigen receptor T cells robustly control multiple myeloma. Oncoimmunology. 2021;10:1959102.
  27. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, Lim WA. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164:770-779. https://doi.org/10.1016/j.cell.2016.01.011
  28. Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, Downey KM, Yu W, Carrera DA, Celli A, Cho J, Briones JD, Duecker JM, Goretsky YE, Dannenfelser R, Cardarelli L, Troyanskaya O, Sidhu SS, Roybal KT, Okada H, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13:eabe7378.
  29. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, Liu H, Cruz CR, Savoldo B, Gee AP, Schindler J, Krance RA, Heslop HE, Spencer DM, Rooney CM, Brenner MK. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365:1673-1683. https://doi.org/10.1056/NEJMoa1106152
  30. Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M, Turchetto L, Colombi S, Bernardi M, Peccatori J, Pescarollo A, Servida P, Magnani Z, Perna SK, Valtolina V, Crippa F, Callegaro L, Spoldi E, Crocchiolo R, Fleischhauer K, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009;10:489-500. https://doi.org/10.1016/S1470-2045(09)70074-9
  31. Marin V, Cribioli E, Philip B, Tettamanti S, Pizzitola I, Biondi A, Biagi E, Pule M. Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells. Hum Gene Ther Methods. 2012;23:376-386. https://doi.org/10.1089/hgtb.2012.050
  32. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5:254.
  33. Robert C, Marquevielle J, Salgado GF. The promoter region of the proto-oncogene MST1R contains the main features of G-quadruplexes formation. Int J Mol Sci. 2022;23:12905.
  34. Cazes A, Childers BG, Esparza E, Lowy AM. The MST1R/RON tyrosine kinase in cancer: oncogenic functions and therapeutic strategies. Cancers (Basel). 2022;14:2037.