DOI QR코드

DOI QR Code

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi (Department of Civil and Environmental Engineering, University of Nebraska-Lincoln) ;
  • Yuan Feng (Department of Civil and Environmental Engineering, University of Nebraska-Lincoln) ;
  • Jongwan Eun (Department of Civil and Environmental Engineering, University of Nebraska-Lincoln) ;
  • Boo Hyun Nam (Department of Civil Engineering, Kyung Hee University)
  • 투고 : 2022.12.29
  • 심사 : 2023.03.28
  • 발행 : 2023.04.25

초록

This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

키워드

과제정보

The authors appreciate the financial support from the Nebraska Collaboration Initiatives (ID 19521), and the finding and conclusions do not necessarily reflect the sponsor's perspectives. Also, thanks to the material support from Lancaster County Bluff Road Landfill.

참고문헌

  1. ASTM D6836-02 (2002), Standard Test Methods for Determination of the Soil Water Chararcteristic Curve for Desorption Using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge, ASTM International, West Conshohocken, PA, www.astm.org
  2. Alidoust, P., Keramati, M., Hamidian, P., Amlashi, A.T., Gharehveran, M.M. and Behnood, A. (2021), "Prediction of the shear modulus of municipal solid waste (MSW): An application of machine learning techniques", J. Cleaner Product., 127053. https://doi.org/10.1016/j.jclepro.2021.127053.
  3. Athanasopoulos, G., Vlachakis, V., Zekkos, D. and Spiliotopoulos, G. (2013), "The December 29th 2010 Xerolakka municipal solid waste landfill failure", Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris.
  4. Breitmeyer, R.J. and Benson, C.H. (2011), "Measurement of unsaturated hydraulic properties of municipal solid waste. In Geo-frontiers 2011", Adv. Geotech. Eng., 1433-1442. https://doi.org/10.1061/41165(397)147.
  5. Breitmeyer, R.J. and Benson, C.H. (2014), "Evaluation of parameterization techniques for unsaturated hydraulic conductivity functions for municipal solid waste", Geotech. Test. J., 37(4), 597-612. https://doi.org/10.1520/GTJ20130132.
  6. Breitmeyer, R.J., Benson, C.H. and Edil, T.B. (2020), "Effect of changing unit weight and decomposition on unsaturated hydraulics of municipal solid waste in bioreactor landfills", J. Geotech. Geoenviron. Eng., 146(5), 04020021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002244.
  7. Breitmeyer, R.J., Benson, C.H. and Edil, T.B. (2019), "Effects of compression and decomposition on saturated hydraulic conductivity of municipal solid waste in bioreactor landfills. Journal of Geotechnical and Geoenvironmental Engineering, 145(4), 04019011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002026.
  8. Bray, J.D., Zekkos, D., Kavazanjian Jr, E., Athanasopoulos, G.A. and Riemer, M.F. (2009), "Shear strength of municipal solid waste", J. Geotech. Geoenviron. Eng., 135(6), 709-722. https://doi.org/10.1061/(ASCE)GT.1943-5606 .0000063.
  9. Bonaparte, R., Bachus, R.C. and Gross, B.A. (2020), "Geotechnical stability of waste fills: lessons learned and continuing challenges", J. Geotech. Geoenviron. Eng., 146(11), 05020010.
  10. Bouchez, T., Munoz, M.L., Vessigaud, S., Bordier, C., Aran, C. and Duquennoi, C. (2003), October. Clogging of MSW landfill leachate collection systems: prediction methods and in situ diagnosis. In Proceedings, Sardinia.
  11. Byun, B., Kim, I., Kim, G., Eun, J. and Lee, J. (2019), "Stability of bioreactor landfills with leachate injection configuration and landfill material condition", Comput. Geotech., 108, 234-243. https://doi.org/10.1016/j.compgeo.2019.01.006.
  12. Eid, H.T., Stark, T.D., Evans, W.D. and Sherry, P.E. (2000), "Municipal solid waste slope failure. I: Waste and foundation soil properties", J. Geotech. Geoenviron. Eng., 126(5), 397-407. https://doi.org/10.1061/(ASCE) 1090-0241(2000)126:5(397).
  13. Feng, Y., Mousavi, M.S. and Eun, J. (2020), " Field monitoring of landfill gas Eemissions through an intermediate cover with coextruded EVOH geomembrane in an operating landfill", Proceedings of the Geo-Congress 2020: Geo-Systems, Sustainability, Geoenvironmental Engineering, and Unsaturated Soil Mechanics, 199-206. Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784482827.022.
  14. Feng, Y., Eun, J., Moon, S. and Nam, Y. (2023), "Assessment of gas dispersion near an operating landfill treated by different intermediate covers with soil alone, low-density polyethylene (LLDPE), or ethylene vinyl alcohol (EVOH) geomembrane", Environ. Sci. Pollution Res., 30(4), 9672-9687. https://doi.org/10.1007/s11356-022-22794-3.
  15. Fleming, I.R., Rowe, R.K. and Cullimore, D.R. (1999), "Field observations of clogging in a landfill leachate collection system", Can. Geotech. J., 36(4), 685-707. https://doi.org/10.1139/t99-036.
  16. Fredlund, D.G. and Rahardjo, H. (1993), Soil mechanics for unsaturated soils. John Wiley & Sons.
  17. Gaillard, J.C. (2009), "From marginality to further marginalization: Experiences from the victims of the July 2000 Payatas trashslide in the Philippines", Jamba J. Disaster Risk Studies, 2(3), 197-215. https://hdl.handle.net/10520/EJC51172. 10520/EJC51172
  18. Giri, R.K. and Reddy, K.R. (2013), "Two-phase flow modeling of leachate injection effects on stability of bioreactor landfill slopes", Proceedings of the 106th Annual Conference Exhibition, Air & Waste Management Association, Pittsburg, PA.
  19. Giri, R.K. and Reddy, K.R. (2014a), "Slope stability of bioreactor landfills during leachate injection: Effects of unsaturated hydraulic properties of municipal solid waste", Int. J. Geotech. Eng., 8(2), 144-156. https://doi.org/10.1179/1939787913Y.0000000013.
  20. Giri, R.K. and Reddy, K.R. (2014b), "Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions", Waste Management Res., 32(3), 186-197. https://doi.org/10.1177%2F0734242X14522492. https://doi.org/10.1177%2F0734242X14522492
  21. Hartwell, J., Mousavi, M.S., Eun, J. and Bartelt-Hunt, S. (2022), "Assessment of in situ properties of municipal solid waste with a large-diameter borehole method", Waste Management Res., 40(7), 987-997. https://doi.org/10.1177/0734242X211057012
  22. Hartwell, J., Mousavi, M.S., Eun, J. and Bartelt-Hunt, S. (2021), "Evaluation of depth-dependent properties of municipal solid waste using a large diameter-borehole sampling method", J. Air Waste Management Association, 1-14. https://doi.org/10.1080/10962247.2020.1848942.
  23. Hendron, D.M., Fernandez, G., Prommer, P.J., Giroud, J.P. and Orozco, L.F. (1999), "Investigation of the cause of the 27 September 1997 slope failure at the Dona Juana landfill", Proceedings of the Proceedings Sardinia 1999. 7th International Waste Management and Landfill Symposium. 
  24. Hettiarachchi, C.H., Meegoda, J.N., Tavantzis, J. and Hettiaratchi, P. (2007), "Numerical model to predict settlements coupled with landfill gas pressure in bioreactor landfills", J. Hazard. Mater., 139(3), 514-522. https://doi.org/10.1016/j.jhazmat.2006.02.067
  25. Hilf, J.W. (1948), "Estimating construction pore pressures in rolled earth dams",. Proceedings of the 2nd Int. Conf. Soil Mech. Found. Eng., Rotterdam. The Netherlands.
  26. Hossain, M.S. and Haque, M.A. (2009), "Stability analyses of municipal solid waste landfills with decomposition", Geotech. Geol. Eng., 27(6), 659. https://doi.org/10.1007/s10706-009-9265-0.
  27. Jafari, N.H., Stark, T.D. and Merry, S. (2013), "Payatas landfill slope failure", ISSMGE Int. J. Geoeng. Case Histories, 2(3), 208-228. https://doi.org/10.4417/IJGCH-02-03-03.
  28. Jain, P., Townsend, T.G. and Tolaymat, T.M. (2010), "Steady-state design of vertical wells for liquids addition at bioreactor landfills", Waste Management, 30(11), 2022-2029. https://doi.org/10.1016/j.wasman.2010.02.020.
  29. Koerner, R.M. and Soong, T.Y. (2000), "Stability assessment of ten large landfill failures", Adv. Transport. Geoenviron. Syst. Geosynth., 1-38. https://doi.org/10.1061/40515(291)1.
  30. Koerner, R.M. and Soong, T.Y. (2000b), "Leachate in landfills: the stability issues", Geotext. Geomembranes, 18(5), 293-309. https://doi.org/10.1016/S0266-1144(99)00034-5.
  31. Koerner, R.M. and Soong, T.Y. (2005), "Analysis and design of veneer cover soils", Geosynthetics Int., 12(1), 28-49. https://doi.org/10.1680/gein.2005.12.1.28.
  32. Levine, A.D., Harwood, V.J., Cardoso, A.J., Rhea, L.R., Nayak, B.S., Dodge, B.M., Decker, M.L., Dzama, G., Jones, L. and Haller, E. (2005), Assessment of Biogeochemical Deposits in Landfill Drainage Systems.
  33. Li, Z., Gao, Y., Chen, B. and Wang, L. (2022), "Soil water retention and hysteresis behaviors of different clayey soils at high suctions", Geomech. Eng., 30(4), 373-382. https://doi.org/10.12989/gae.2022.30.4.373.
  34. Liu, Y., Sun, W., Du, B. and Liu, J. (2018), "The physical clogging of the landfill leachate collection system in China: Based on filtration test and numerical modelling", Int. J. Environ. Res. Public Health, 15(2), 318. https://doi.org/10.3390/ijerph15020318.
  35. Liu, C., Shi, J., Lv, Y. and Shao, G. (2020), "A modified stability analysis method of landfills dependent on gas pressure", Waste Management Res., 0734242X20944479. https://doi.org/10.1177%2F0734242X20944479 https://doi.org/10.1177%2F0734242X20944479
  36. McBean, E.A. (1995), Solid waste landfill engineering and design.
  37. McIsaac, R. and Rowe, R.K. (2007), "Clogging of gravel drainage layers permeated with landfill leachate", J. Geotech Geoenviron. Eng., 133(8), 1026-1039. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(1026).
  38. Merry, S.M., Kavazanjian Jr, E. and Fritz, W.U. (2005), "Reconnaissance of the July 10, 2000, Payatas landfill failure", J. Perform. Constr. Fac., 19(2), 100-107. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:2(100).
  39. Mitchell, J.K., Seed, R.B. and Seed, H.B. (1990), "Kettleman Hills waste landfill slope failure. I: Liner-system properties", J. Geotech. Eng., 116(4), 647-668. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(647).
  40. Mousavi, M.S. and Eun, J. (2023), "A predictive settlement modeling framework employing thermal-hydraulic-mechanical-biochemical processes in municipal solid waste landfills", Int. J. Geomech. ASCE, in publishing.
  41. Mousavi, M.S. and Eun, J. (2022), "Effect of increased temperature and leachate recirculation on biogas production and settlement of municipal solid waste", Waste Management Res., 0734242X221144563.
  42. Mualem, Y. (1976), "A new model for predicting the hydraulic conductivity of unsaturated porous media", Water Resour. Res., 12(3), 513-522. https://doi.org/10.1029/WR012i003p00513.
  43. Ng, C.W.W., Chen, Z.K., Coo, J.L., Chen, R. and Zhou, C. (2015), "Gas breakthrough and emission through unsaturated compacted clay in landfill final cover", Waste Management, 44, 155-163. https://doi.org/10.1016/j.wasman.2015.06.042.
  44. Oh, S. and Lu, N. (2015), "Slope stability analysis under unsaturated conditions: Case studies of rainfall-induced failure of cut slopes", Eng. Geol., 184, 96-103. https://doi.org/10.1016/j.enggeo.2014.11.007.
  45. Punmia, B. and Jain, A.K. (2005), Soil mechanics and foundations. Firewall Media.
  46. Rasool A.M. (2022), "Effect of degree of compaction & confining stress on instability behavior of unsaturated soil", Geomech. Eng., 30(3), 219-231. https://doi.org/10.12989/gae.2022.30.3.219.
  47. Reinhart, D.R. and Townsend, T.G. (1997), Landfill bioreactor design & operation. CRC press.
  48. Reinhart, D.R., McCreanor, P.T. and Townsend, T. (2002), "The bioreactor landfill: Its status and future", Waste Management & Res., 20(2), 172-186. https://doi.org/10.1177%2F0734242X0202000209. https://doi.org/10.1177%2F0734242X0202000209
  49. Roy, D., Chiranjeevi, K., Singh, R. and Baidya, D.K. (2009), "Rainfall induced instability of mechanically stabilized earth embankments", Geomech. Eng., 1(3), 193-204. https://doi.org/10.12989/gae.2009.1.3.193.
  50. Rowe, R.K. and Yu, Y. (2012), "Clogging of finger drain systems in MSW landfills", Waste Management, 32(12), 2342-2352. https://doi.org/10.1016/j.wasman.2012.07.018.
  51. Rowe, R.K. and Yu, Y. (2013), "Modeling of leachate characteristics and clogging of gravel drainage mesocosms permeated with landfill leachate", J. Geotech. Geoenviron. Eng., 139(7), 1022-1034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000834.
  52. Samarasinghe, A.M., Huang, Y.H. and Drnevich, V.P. (1982), "Permeability and consolidation of normally consolidated soils", J. Geotech. Eng. Division, 108(6), 835-850. https://doi.org/10.1061/AJGEB6.0001305.
  53. Sharma, H.D. and Reddy, K.R. (2004), Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies, John Wiley & Sons.
  54. Stark, T.D., Akhtar, K. and Hussain, M. (2010), "Stability analysis for a landfill experiencing elevated temperatures", In GeoFlorida 2010: Advances in Analysis, Modeling & Design, 3110-3119. https://doi.org/10.1061/41095(365)317.
  55. Stark, T.D., Eid, H.T., Evans, W.D. and Sherry, P.E. (2000), "Municipal solid waste slope failure. II: Stability analyses", J. Geotech. Geoenviron. Eng., 126(5), 408-419. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(408).
  56. Stoltz, G., Tinet, A.J., Staub, M.J., Oxarango, L. and Gourc, J.P., (2012), "Moisture retention properties of municipal solid waste in relation to compression", J. Geotech. Geoenviron. Eng., 138(4), 535-543. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000616.
  57. Thiel, R.S. (1998), "Design methodology for a gas pressure relief layer below a geomembrane landfill cover to improve slope stability", Geosynth. Int., 5(6), 589-617. https://doi.org/10.1680/gein.5.0137.
  58. U.S. Environmental Protection Agency (2007), Bioreactor performance. EPA 530-R-07-007, U.S. EPA, Office of Solid Waste, Municipal and Industrial Solid Waste Management Division, Washington, DC.
  59. Van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Am., 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
  60. Wei, H.Y. (2007), Experimental and numerical study on gas migration in landfill of municipal solid waste, Hangzhou: Zhejian University.
  61. Wilson, D.W. (1998), Soil-pile-superstructure interaction in liquefying sand and soft clay (Doctoral dissertation, University of California, Davis).
  62. Wu, H., Wang, H., Zhao, Y., Chen, T. and Lu, W. (2012), "Evolution of unsaturated hydraulic properties of municipal solid waste with landfill depth and age", Waste Management, 32(3), 463-470. https://doi.org/10.1016/j.wasman.2011.10.029.
  63. Xu, Q., Tolaymat, T. and Townsend, T.G. (2012), "Impact of pressurized liquids addition on landfill slope stability", J. Geotech. Geoenviron. Eng., 138(4), 472-480. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000609.
  64. Xu, X.B., Zhan, T.L.T., Chen, Y.M. and Beaven, R.P. (2014), "Intrinsic and relative permeabilities of shredded municipal solid wastes from the Qizishan landfill, China", Can. Geotech. J., 51(11), 1243-1252. https://doi.org/10.1139/cgj-2013-0306.
  65. Zapata, C.E., Houston, W.N., Houston, S.L. and Walsh, K.D. (2000), "Soil-water characteristic curve variability", Adv. Unsatur. Geotech., 84-124. https://doi.org/10.1061/40510(287)7.
  66. Zekkos, D., Vlachakis, V.S. and Athanasopoulos, G.A. (2014), "The 2010 Xerolakka landfill slope instability", Environ. Geotech., 1(1), 56-65. https://doi.org/10.1680/envgeo.13.00003
  67. Zekkos, D., Bray, J.D., Kavazanjian Jr, E., Matasovic, N., Rathje, E.M., Riemer, M.F. and Stokoe, K.H. (2006), "Unit weight of municipal solid waste", J. Geotech. Geoenviron. Eng., 132(10), 1250-1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250).
  68. Zhai, Q., Tian, G., Ye, W., Rahardjo, H., Dai, G. and Wang, S. (2022), "Evaluation of unsaturated soil slope stability by incorporating soil-water characteristic curve", Geomech. Eng., 28(6), 637-644. https://doi.org/10.12989/gae.2022.28.6.637.