DOI QR코드

DOI QR Code

Combined resonant column and cyclic triaxial tests to estimate the dynamic behavior of undisturbed saturated clayey soils of Adapazarı, Turkey

  • Ersin Guler (Eskisehir Osmangazi University, Civil Engineering Department) ;
  • Kamil Bekir Afacan (Eskisehir Osmangazi University, Civil Engineering Department)
  • Received : 2022.10.21
  • Accepted : 2023.02.15
  • Published : 2023.05.10

Abstract

Turkey is one of the most important earthquake regions in Europe. This region has been exposed to many earthquakes of different magnitudes from past to present. It is of great importance to determine the dynamic properties of the soils for structures to be built in earthquake zones. In order to minimize the damages that may occur, the behavior of the soils under repeated loads should be known and taken into consideration in the design. In this study, 4 different point borings were taken near active fault lines in the North Anatolian fault zone (NAFZ). In order to determine the dynamic parameters of soils, both dynamic triaxial (TRX) and resonant column (RC) tests were carried out on undisturbed samples at every 5 m. As a result of the experiments, Vs and Gmax values were obtained from the field and differences were determined. The dynamic behavior of the soil was examined at varying depths with the comparison of reference models in the literature and compatible results were obtained. Finally, the behavior at the transition region is highlighted. As a result, three shear modulus and dumping ratio models have been proposed for clay soils to be used in different soil conditions.

Keywords

Acknowledgement

This work has been supported by Eskisehir Osmangazi University Scientific Research Projects Coordination Unit under grant number: 201915A211 This study was conducted by Ersin Guler at the Institute of Natural and Applied Science of Eskisehir Osmangazi University as a Ph.D. thesis.

References

  1. Amir-Faryar, B., Aggour, M.S. and McCuen, R.H. (2017), "Universal model forms for predicting the shear modulus and material damping of soils", Geomech. Geoeng., 12, 60-71 https://doi.org/10.1080/17486025.2016.1162332
  2. Akbas, B., Akdeniz, N., Aksay, A., Altun, I.E.., Balci, V., Bilginer, E, Bilgic, T., Duru, M., Ercan, T., Gedik, I., Gunay, Y., Guven, I.H., Hakyemez, H.Y., Konak, N., Papak, I., Pehlivan, S., Sevin, M., Senel, M., Tarhan, N., Turhan, N., Turkecan, A., Ulu, U., Uguz, M.F., Yurtsever, A., et al. (2002), prepared by the Geological Research Department of the General Directoate of Mineral Research and Exploration, produced by ISLEM Geographic Information Systems Company in ARC/INFO 8.1 encuviroment, 2002 and printed by General Command of Mapping. Topographic information is taken by modifying from the 1:500.000 and 1:250.000 scale topographic maps (projection system is Lambert Conformal Conic) of General Command of Mapping (Ankara).
  3. ASTM. D4015-15. Standard test methods for modulus and damping of soils by resonant-column method. D4015-15.
  4. ASTM D4767-11. Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, Annual Book of ASTM Standards, 913-925.
  5. Bayat, M. and Ghalandarzadeh, A. (2018), "Stiffness degradation and damping ratio of sand-gravel mixtures under saturated state". Int. J. Civ. Eng., 16, 1261-1277. https://doi.org/10.1007/s40999-017-0274-8.
  6. Bol, E. (2003), "Geotechnical properties of Adapazari soils", Ph.D. Thesis. Sakarya Universitesi Natural and Applied Sciences.
  7. Bogazici University Kandilli Observatory and Earthquake Research Institute Regional Earthquake-Tsunami Monitoring Center. Seismicity Map for (2020), http://www.koeri.boun.edu.tr/sismo/2/depremverileri/depremsellik-haritalari/
  8. Cavallari, A. (2016), "Resonant column testing challenges". 1st IMEKO TC-4 International Workshop on Metrology for Geotechnics Benevento, March 17-18, Italy.
  9. Chattaraj, R. and Sengupta, A, (2016), "Liquefaction potential and strain dependent dynamic properties of Kasai River sand", Soil Dyn. Earthq. Eng., 90, 467-475, https://doi.org/10.1016/j.soildyn.2016.07.023
  10. Darendeli, M.B. (2001), "Development of a new family of normalized modulus reduction and material damping curves", Ph.D. Thesis. The University of Texas at Austin, ABD.
  11. Ghayoomi, M., Suprunenko, G. and Mirshekari, M. (2017), "Cyclic triaxial test to measure strain-dependent shear modulus of unsaturated sand", Int. J. Geomech., 17(9). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000917.
  12. Guler, E. and Afacan, KB. (2021), "Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests". Geomech. Eng., 105-113. https://doi.org/10.12989/gae.2021.24.2.105.
  13. Harman, E. and Kuyuk, HS. (2016), "Probabilistic seismic hazard analysis for the city of Sakarya", J. SAU, 20, 23-31. https://doi.org/10.16984/saufenbilder.10689
  14. Houbrechts, J., Schevenel, M., Lombaert, G., Degrande, G., Rucker, W., Cuellar, V. et al. (2011), "RIVAS WP1.1. Test procedures for the determination of the dynamic soil characteristics", 1-107.
  15. Hussain, M. and Sachan, A., (2019), "Dynamic characteristics of natural kutch sandy soils", Soil Dyn. Earthq. Eng., 125, 105717. https://doi.org/10.1016/j.soildyn.2019.105717.
  16. Jamali, H., Tolooiyan, A., Dehghani, M., Asakereh, A. and Kalantari, B. (2018), "Post-long-term cyclic behaviour of Coode Island Silt (CIS) containing different sand content", Appl. Ocean Res., 80, 11-23. https://doi.org/10.1016/j.apor.2018.08.018.
  17. Kaya, Z. and Erken, A. (2015), "Cyclic and post-cyclic monotonic behavior of Adapazari soils", Soil Dyn. Earthq. Eng., 77, 83-96 https://doi.org/10.1016/j.soildyn.2015.05.003
  18. Ketin, I. (1991), The North Anatolian Fault. Journal of MTA.
  19. Kim, A.R., Chang, I., Cho, G.C. and Shim, S.H. (2018), "Strength and dynamic properties of cement-mixed Korean marine clays". KSCE J. Civ. Eng., 22, 1150-1161. https://doi.org/10.1007/s12205-017-1686-3.
  20. Kokusho, T. (1980), "Cyclic triaxial test of dynamic soil properties for wide strain range", Soils Found., 20, 45-60. https://doi.org/10.3208/sandf1972.20.2_45.
  21. Komazawa, M., Morikawa, H., Nakamura, K., Akamatsu, J., Nishimura, K., Sawada, S., Erken, A. and O nalp, A. (2002), "Bedrock structure in Adapazari, Turkey - A possible cause of severe damage by the 1999 Kocaeli Earthquake", Soil Dny. Earthq. Eng., 22, 829-836. https://doi.org/10.1016/S0267-7261(02)00105-7
  22. Kumar, S.S., Krishna, A.M. and Dey, A. (2017), "Evaluation of dynamic properties of sandy soil at high cyclic strains", Soil Dyn. Earthq. Eng., 99, 157-167. https://doi.org/10.1016/j.soildyn.2017.05.016.
  23. Kweon, G.C. and Kim, D.S. (2000), "Deformational characteristics of subgrade soils in Korea", KSCE J. Civ. Eng., 4, 83-90. https://doi.org/10.1007/bf02830821.
  24. Li, H. and Senetakis, K. (2018), "Effects of particle grading and stress state on strain-nonlinearity of shear modulus and damping ratio of sand evaluated by resonant-column testing", J. Earthq. Eng., 1-27. https://doi.org/10.1080/13632469.2018.1487349.
  25. Park, C.S., Park, I.B. and Mok, Y.J. (2015), "Evaluation of resilient moduli for recycled crushed-rock-soil-mixtures using in-situ seismic techniques and large-scale resonant column tests", KSCE J. Civ. Eng., 19, 1647-1655. https://doi.org/10.1007/s12205-014-1020-2.
  26. RC/Torsional Shear Testing System. GCTS Testing. Resonant Column/Torsional Shear Testing System and CATS Module.
  27. Sakarya Governorship Provincial Directorate Of Environment And Urbanization (2018), Sakarya Province 2017 Environmental Status Report.
  28. Salem, M.A., Karim, A.M. and El-Sherbini, E.A. (2018), "Static and dynamic properties of cohesionless soil-new Suez canal area-Ismailia-Egypt", Int. J. Geotech. Eng., 1-12 https://doi.org/10.1080/19386362.2018.1514756
  29. Sexena, S.K. and Reddy, K.R. (1989), "Dynamic moduli and damping ratios for monterey no.0 sand by resonant column tests", Soils Found., 29(2), 37-51. https://doi.org/10.3208/sandf1972.29.2_37.
  30. Shivaprakash, B.G. and Dinesh, S.V. (2018), "Effect of plastic fines on initial shear modulus of sand-clay mixtures", KSCE J. Civ. Eng., 22, 73-82. https://doi.org/10.1007/s12205-017-1076-x
  31. Sobolev, E. and Ter-Martirosyan, A. (2018), "Interaction of the base and construction under seismic action, with considering various characteristics of soil damping", MATEC Web Conf, 251. https://doi.org/10.1051/matecconf/201825104011.
  32. Song, D., Liu, H. and Sun, Q., (2022), "Significance of determination methods on shear modulus measurements of Fujian sand in cyclic triaxial testing", Appl. Sci., 12(8690). https://doi.org/10.3390/app12178690
  33. Stewart, J.P., Afshari, K. and Hashash, Y.M.A. (2014), "Guidelines for performing hazard-consistent one-dimensional ground response analysis for ground motion prediction", Report PEER. 16, 152.
  34. Subramaniam, P. and Banerjee, S. (2016), "Torsional shear and resonant column tests on cement treated marine clay", Indian Geotech. J., 46, 183-191. https://doi.org/10.1007/s40098-015-0170-6
  35. Thomas, G. and Rangaswamy, K. (2020), "Dynamic soil properties of nanoparticles and bioenzyme treated soft clay", Soil Dyn. Earthq. Eng., 137, 106324. https://doi.org/10.1016/j.soildyn.2020.106324
  36. Varghese, R., Senthen Amuthan, M., Boominathan, A. and Banerjee, S. (2019), "Cyclic and postcyclic behaviour of silts and silty sands from the Indo Gangetic Plain", Soil Dyn. Earthq. Eng., 125, 105750. https://doi.org/10.1016/j.soildyn.2019.105750.
  37. Vucetic, M. and Dobry, R. (1991), "Effect of soil plasticity on cyclic response", ASCE J. Geotech. Eng., 117(1), 89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
  38. Zhou, W., Chen, Y., Ma, G., Yang, L. and Chang, X. (2017), "A modified dynamic shear modulus model for rockfill materials under a wide range of shear strain amplitudes", Soil Dyn. Earthq. Eng., 92, 229-238. https://doi.org/10.1016/j.soildyn.2016.10.027