DOI QR코드

DOI QR Code

Antidiabetic Effect of Aurantii Fructus Immaturus in Streptozotocin-induced Diabetes Model of Mice

Streptozotocin 유도 당뇨병 생쥐 모델에서 지각 추출물의 항당뇨 효과

  • Kyung-Jae Yi (Department of Third Medicine of Korean Medicine, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Ji-Sung Im (Department of Korean Medicine Rehabilitation, College of Korean Medicine Wonkwang University) ;
  • Ji-Eun Kim (Department of Korean Medicine Rehabilitation, College of Korean Medicine Wonkwang University) ;
  • Su-Kyung Lee (Department of Korean Medicine Rehabilitation, College of Korean Medicine Wonkwang University) ;
  • Hyun-Joo Kim (Department of Third Medicine of Korean Medicine, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Yung-Sun Song (Department of Third Medicine of Korean Medicine, Professional Graduate School of Oriental Medicine, Wonkwang University)
  • 이경재 (원광대학교 한의학전문대학원 제3의학과) ;
  • 임지성 (원광대학교 한의과대학 한방재활의학교실) ;
  • 김지은 (원광대학교 한의과대학 한방재활의학교실) ;
  • 이수경 (원광대학교 한의과대학 한방재활의학교실) ;
  • 김현주 (원광대학교 한의학전문대학원 제3의학과) ;
  • 송용선 (원광대학교 한의학전문대학원 제3의학과)
  • Received : 2022.10.07
  • Accepted : 2022.12.26
  • Published : 2023.02.25

Abstract

The aim of this study is to evaluate the antidiabetic effect of the water extract of Aurantii fructus immaturus (WAF), in diabetic models using enzyme, cells and mice, and to suggest a putative mechanism explaining its antidiabetic effect. In an enzyme model using the enzyme α-glucosidase, WAF had no significant effect on α-glucosidase, as compared with acarbose, an antidiabetic drug. Nonetheless, WAF was capable of reducing the blood glucose levels during oral sucrose tolerance test and oral glucose tolerance test, implying that there would be other antidiabetic pathways in no relation to inhibition of α-glucosidase. In cell models using RIN-m5f β-cells and L6 myotubes, WAF, at its non-cytotoxic doses, augmented the secretion of insulin in RIN-m5f β-cells stimulated with 5 mM glucose. In addition, it enhanced the cellular uptake of glucose in L6 myotubes stimulated with deprivation of glucose for 12 h. Therefore, it is most likely that WAF may exert its antidiabetic effects, at least in part, by enhancing insulin secretion and glucose uptake. Meanwhile, in diabetic mice induced with peritoneal injection of streptozotocin (STZ), WAF significantly improved fast blood glucose levels, glycosylated hemoglobin levels, body weight loose, blood pressure, and diabetic adverse effects on functions of the kidney and the liver. Taken together, the water extract of Aurantii fructus immaturus may ameliorate diabetes in mice injected with STZ, at least in part, by enhancing insulin secretion and glucose uptake.

Keywords

Acknowledgement

본 연구는 2021년도 원광대학교 교비 지원에 의하여 연구되었음.

References

  1. Guthrie RA, Guthrie DW. Pathophysiology of diabetes mellitus. Crit Care Nurs Q. 2004;27(2):113-25. https://doi.org/10.1097/00002727-200404000-00003
  2. Arneth B, Arneth R, Shams M. Metabolomics of Type 1 and Type 2 Diabetes. Int J Mol Sci. 2019;20(10):2467. doi:10.3390/ ijms20102467.
  3. Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92(1084):63-9. https://doi.org/10.1136/postgradmedj-2015-133281
  4. Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491-509. https://doi.org/10.2217/fca-2018-0045
  5. Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113(Pt A):600-9. https://doi.org/10.1016/j.phrs.2016.09.040
  6. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10(5):293-302. https://doi.org/10.1038/nrendo.2014.29
  7. Xie F, Chan JC, Ma RC. Precision medicine in diabetes prevention, classification and management. J Diabetes Investig. 2018;9(5): 998-1015. https://doi.org/10.1111/jdi.12830
  8. Ibrahim M, Tuomilehto J, Aschner P, et al. Global status of diabetes prevention and prospects for action: A consensus statement. Diabetes Metab Res Rev. 2018;34(6):e3021. doi:10.1002/ dmrr.3021.
  9. Davoren P. Glucose-lowering medicines for type 2 diabetes. Aust Fam Physician. 2015;44(5):176-9.
  10. Kashyap H, Gupta S, Bist R. Impact of Active Antihyperglycemic Components as Herbal Therapy for Preventive Health Care Management of Diabetes. Curr Mol Med. 2019;19(1):12-9. https://doi.org/10.2174/1566524019666190219124301
  11. Saimei Li, Peizheng Lin. Recent Status of "Dampness-heat-induced Resolution" in Diabetes Mellitus Traditional Chinese Medicine. Zhejiang Chinese Medicine Journal. 2006;4:242-5.
  12. Min Liu, Jing Li, Zhangzhi Zhu, Lianyi Dai. Analysis of syndrome of damp-heat syndrome of Diabetes Mellitus. The New Chinese Medicine Journal. 2005;37(9):3-5.
  13. Taikang Huang, Editor. Traditional Chinese Medicine Treatment for Endocrine Metabolism Disease. Beijing: China Medical Science Press; 2002, p. 459.
  14. Xinlan Ma. Analysis of Diabetes Mellitus Qi and blood. Liaoning Chinese Medicine Journal. 1997:4:167.
  15. Korea Institute of Oreintal Medicine. Citrus aurantium A, Korean Intellectual Property Office, 2007; Available from : https://doi.org/10.20929/KTKP.MED.0000080008.
  16. Doo Ill Han, Bang Yeon Hwang, Suk Yeon Hwang, Jeong Hill PARK, Kun Ho Son, Seung Ho Lee, Seung Yeup Chang, Shin Jung Kang, Jai Seup Ro, Kyong Soon Lee. Isolation and Quantitative Analysis of Hesperidin from Aurantii Fructus. Korean Journal of Pharmacognosy. 2001;32(2):93-7.
  17. Sundaram R, Nandhakumar E, Haseena Banu H. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicol Mech Methods. 2019;29(9):644-53. https://doi.org/10.1080/15376516.2019.1646370
  18. Xuguang H, Aofei T, Tao L, Longyan Z, Weijian B, Jiao G. Hesperidin ameliorates insulin resistance by regulating the IRS1-GLUT2 pathway via TLR4 in HepG2 cells. Phytother Res. 2019;33(6):1697-1705. https://doi.org/10.1002/ptr.6358
  19. Hanchang W, Khamchan A, Wongmanee N, Seedadee C. Hesperidin ameliorates pancreatic β-cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model. Life Sci. 2019;235:116858. doi:10.1016/j.lfs.2019.116858.
  20. Bai L, Li X, He L, et al. Antidiabetic Potential of Flavonoids from Traditional Chinese Medicine: A Review. Am J Chin Med. 2019;47(5):933-57. https://doi.org/10.1142/S0192415X19500496
  21. Park, Jung-Sup, Park, Chong-Hyeong, Jun, Chan-Yong, Choi, You-Kyung, Hwang, Gwi-Seo, Kim, Dong-Woo. The Anti-diabetes and Vasoelasticity Effects of Mori Folium and Aurantii Fructus in Streptozotocin Induced Type II Diabetes Mellitus Model. The journal of internal Korean medicine 007;28(3):544-59.
  22. Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc Pharmacol. 2015;70:5.47.1-5.47.20. doi: 10.1002/0471141755.ph0547s70.
  23. Aoki K, Sato H, Terauchi Y. Usefulness of antidiabetic alpha-glucosidase inhibitors: a review on the timing of administration and effects on gut hormones. Endocr J. 2019;66(5):395-401. https://doi.org/10.1507/endocrj.EJ19-0041
  24. Rios JL, Francini F, Schinella GR. Natural Products for the Treatment of Type 2 Diabetes Mellitus. Planta Med. 2015;81(12-13):975-94. https://doi.org/10.1055/s-0035-1546131
  25. Naveen J, Baskaran V. Antidiabetic plant-derived nutraceuticals: a critical review. Eur J Nutr. 2018;57(4):1275-99. https://doi.org/10.1007/s00394-017-1552-6
  26. Dhanya R, Jayamurthy P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem Funct. 2020;10.1002/cbf.3478. doi:10.1002/cbf.3478.
  27. Rehman K, Munawar SM, Akash MSH, et al. Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation. PLoS One. 2020;15(1):e0227637. doi:10.1371/journal.pone.0227637.
  28. Chen YJ, Kong L, Tang ZZ, et al. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed Pharmacother. 2019;111:1166-75. https://doi.org/10.1016/j.biopha.2019.01.030
  29. Dokumacioglu E, Iskender H, Musmul A. Effect of hesperidin treatment on α-Klotho/FGF-23 pathway in rats with experimentally-induced diabetes. Biomed Pharmacother. 2019;109:1206-10. https://doi.org/10.1016/j.biopha.2018.10.192
  30. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137-88.  https://doi.org/10.1152/physrev.00045.2011