DOI QR코드

DOI QR Code

Bambusae Caulis in Taeniam Applicable for Medical Indications Associated with Inflammation

  • Hyo Jae Choi (School of Korean Medicine, Pusan National University) ;
  • Yugyeong Gwak (School of Korean Medicine, Pusan National University) ;
  • Ji Yeon Lee (School of Korean Medicine, Pusan National University) ;
  • Min Jung Kwun (School of Korean Medicine, Pusan National University) ;
  • Jun-Yong Choi (Department of Internal Medicine, Korean Medicine Hospital, Pusan National University) ;
  • Myungsoo Joo (School of Korean Medicine, Pusan National University)
  • 투고 : 2022.11.29
  • 심사 : 2023.02.20
  • 발행 : 2023.02.25

초록

Jukyeo (竹茹; Bambusae Caulis in Taeniam: BCT) is an herbal medicine made from the inner part of the bamboo stem of Phyllostachys nigra Munro var. henonis Stapf ex Rendle or Phyllostachys bambusoides Siebold et Zuccarini. Although medical literature published in China and Korea decades ago introduced BCT as a remedy for reducing vomiting, fever, and hematemesis, decoctions containing BCT as a main herb (君藥) in Korea have been approved only for treating neurologic symptoms. Here, we discuss the anti-inflammatory function of BCT. Combined with the clinical usage of a BCT-containing decoction in treating inflammatory diseases in Japan, we raise the possibility of repurposing the BCT-containing decoctions for treating inflammatory diseases. The anti-inflammatory activity of BCT was mainly assessed by using RAW 264.7 cells. The regulation of NF-κB, Nrf2 and A20 activities was determined by western blot and quantitative RT-PCR. The list of decoctions containing BCT currently approved in Korea was obtained from the Korean Ministry of Food and Drug Safety (KFDA). BCT suppressed the activity of pro-inflammatory factor NF-κB elicited by LPS, activated an anti-inflammatory factor Nrf2, and induced A20 that is known to block several inflammatory pathways simultaneously, suggesting that BCT can suppress inflammation via at least 3 different pathways. KFDA approved 11 decoctions containing BCT as a major herb, including Gamiondam-tang (加味溫膽湯; GOT), for treating neurologic disorders. Interestingly, Jukyeoondam-tang (竹茹溫膽湯; JOT), whose composition is almost identical to GOT except for one herb, has been used to treat inflammatory pulmonary disorders including Covid-19 pulmonary infection in Japan Given the anti-inflammatory function of BCT evidenced by medical literature and experimental results and the clinical usage of JOT in treating inflammatory pulmonary disorders, we suggest a repurposing and extension of the BCT-containing decoctions approved in Korea to treating inflammatory diseases.

키워드

과제정보

This study was supported by the 2-year Research Grant of Pusan National University.

참고문헌

  1. Kim J-H, Jo J-B, Lee J-K. An literature study on Bambusae Caulis in Taeniam. Journal of the Korea Institute of Oriental Medical Informatics. 2007;13(1):55-62.
  2. World Health Organization. Regional Office for the Western P. Medicinal plants in China : a selection of 150 commonly used species. Manila: WHO Regional Office for the Western Pacific; 1989.
  3. Jiao J, Zhang Y, Lou D, Wu X, Zhang Y. Antihyperlipidemic and antihypertensive effect of a triterpenoid-rich extract from bamboo shavings and vasodilator effect of friedelin on phenylephrine-induced vasoconstriction in thoracic aortas of rats. Phytother Res. 2007;21(12):1135-41. https://doi.org/10.1002/ptr.2223
  4. Supplementary Records of Famous Physicians:Beijing: People's Medical Publishing House 1986. 126-7 p.
  5. Heo Jun. Supplementary and Korean Translational Records of Donguibogam: Namsan Dang 1988.
  6. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428-35. https://doi.org/10.1038/nature07201
  7. Chen JK, Chen TT, Crampton L. Chinese Medical Herbology and Pharmacology: Art of Medicine Press; 2004.
  8. Lim D, Cho Y, Kim W, Jeong S, Jang YP, Kim J. Original Research: Extract of Bambusae Caulis in Taeniam inhibits cigarette smoke-induced pulmonary and intestinal inflammation. Exp Biol Med (Maywood). 2017;242(1):102-12. https://doi.org/10.1177/1535370216664429
  9. Kim W, Lim D, Kim J. p-Coumaric Acid, a Major Active Compound of Bambusae Caulis in Taeniam, Suppresses Cigarette Smoke-Induced Pulmonary Inflammation. Am J Chin Med. 2018;46(2):407-21. https://doi.org/10.1142/S0192415X18500209
  10. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205-19. https://doi.org/10.1056/NEJMra1004965
  11. Giannini D, Antonucci M, Petrelli F, Bilia S, Alunno A, Puxeddu I. One year in review 2020: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2020;38(3):387-97. https://doi.org/10.55563/clinexprheumatol/3uj1ng
  12. Wang X, Li F, Fan C, Wang C, Ruan H. Effects and relationship of ERK1 and ERK2 in interleukin-1β-induced alterations in MMP3, MMP13, type II collagen and aggrecan expression in human chondrocytes.
  13. Ra J, Chung JH, Lee H, Kim J. Reduction of interleukin-1 β induced matrix metalloproteinase-3 release by extracts of six plants: inhibitory screening of 35 traditional medicinal plants. Immunopharmacol Immunotoxicol. 2011;33(3):461-5. https://doi.org/10.3109/08923973.2010.537663
  14. Qi XF, Kim DH, Yoon YS, Li JH, Jin D, Deung YK, et al. Effects of Bambusae caulis in Liquamen on the development of atopic dermatitis-like skin lesions in hairless mice. J Ethnopharmacol. 2009;123(2):195-200. https://doi.org/10.1016/j.jep.2009.03.020
  15. Sorriento D, Iaccarino G. Inflammation and Cardiovascular Diseases: The Most Recent Findings. Int J Mol Sci. 2019;20(16).
  16. Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-kappaB: A Blossoming of Relevance to Human Pathobiology. Cell. 2017;168(1-2):37-57. https://doi.org/10.1016/j.cell.2016.12.012
  17. Rothschild DE, McDaniel DK, Ringel-Scaia VM, Allen IC. Modulating inflammation through the negative regulation of NF-kappaB signaling. J Leukoc Biol. 2018.
  18. Jin GH, Park SY, Kim E, Ryu EY, Kim YH, Park G, et al. Anti-inflammatory activity of Bambusae Caulis in Taeniam through heme oxygenase-1 expression via Nrf-2 and p38 MAPK signaling in macrophages. Environ Toxicol Pharmacol. 2012;34(2):315-23. https://doi.org/10.1016/j.etap.2012.05.001
  19. Eom HW, Park SY, Kim YH, Seong SJ, Jin ML, Ryu EY, et al. Bambusae Caulis in Taeniam modulates neuroprotective and anti-neuroinflammatory effects in hippocampal and microglial cells via HO-1- and Nrf-2-mediated pathways. Int J Mol Med. 2012;30(6):1512-20. https://doi.org/10.3892/ijmm.2012.1128
  20. Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865(5):721-33. https://doi.org/10.1016/j.bbamcr.2018.02.010
  21. Chan K, Kan YW. Nrf2 is essential for protection against acute pulmonary injury in mice. ProcNatlAcadSciUSA. 1999;96(22):12731-6. https://doi.org/10.1073/pnas.96.22.12731
  22. Boutten A, Goven D, Artaud-Macari E, Boczkowski J, Bonay M. NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. Trends in molecular medicine. 2011;17(7):363-71. https://doi.org/10.1016/j.molmed.2011.02.006
  23. Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. JExpMed. 2005;202(1):47-59. https://doi.org/10.1084/jem.20050538
  24. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis 23. JClinInvest. 2006;116(4):984-95. https://doi.org/10.1172/JCI25790
  25. Momtazi G, Lambrecht BN, Naranjo JR, Schock BC. Regulators of A20 (TNFAIP3): new drug-able targets in inflammation. Am J Physiol Lung Cell Mol Physiol. 2019;316(3):L456-l69. https://doi.org/10.1152/ajplung.00335.2018
  26. Hijikata Y, Makiura N, Kano T, Higasa K, Shimizu M, Kawata K, et al. Kampo medicine, based on traditional medicine theory, in treating uncured glossodynia: efficacy in five clinical cases. Am J Chin Med. 2008;36(5):835-47. https://doi.org/10.1142/S0192415X08006284
  27. Gong Tingxian: Man-Byeong-Hoi-Chun: Beijing: People's Medical Publishing House 1998.
  28. Uematsu J, Yamamoto H, Kihira S, Sakai-Sugino K, Ishiyama Y, Chindoh M, et al. Inhibitory effect of traditional herbal (kampo) medicines on the replication of human parainfluenza virus type 2 in vitro. Drug Discov Ther. 2021;15(4):180-8. https://doi.org/10.5582/ddt.2021.01059
  29. Takayama S, Namiki T, Odaguchi H, Arita R, Hisanaga A, Mitani K, et al. Prevention and Recovery of COVID-19 Patients With Kampo Medicine: Review of Case Reports and Ongoing Clinical Trials. Front Pharmacol. 2021;12:656246.
  30. Sobhani Z, Nikoofal-Sahlabadi S, Amiri MS, Ramezani M, Emami SA, Sahebkar A. Therapeutic Effects of Ziziphus jujuba Mill. Fruit in Traditional and Modern Medicine: A Review. Med Chem. 2020;16(8):1069-88. https://doi.org/10.2174/1573406415666191031143553
  31. Choi YY, Kim MH, Cho IH, Kim JH, Hong J, Lee TH, et al. Inhibitory effect of Coptis chinensis on inflammation in LPS-induced endotoxemia. J Ethnopharmacol. 2013;149(2):506-12. https://doi.org/10.1016/j.jep.2013.07.008