DOI QR코드

DOI QR Code

Evaluation of the effect of rubble mound on pile through dynamic centrifuge model tests

  • Jungwon Yun (Department of Civil Engineering, Korea Army Academy at Yeongcheon) ;
  • Jintae Han (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • Received : 2022.11.10
  • Accepted : 2023.04.03
  • Published : 2023.05.25

Abstract

Pile-supported wharves, port structures that support the upper deck, are installed on sloping ground. The sloping ground should be covered with a rubble mound or artificial blocks to protect the interior material from erosion caused by wave force. The behavior of the pile may vary during an earthquake if a rubble mound is installed on the slope. However, studies evaluating the effect of rubble mound on the pile during an earthquake are limited. Here, we performed dynamic centrifuge model tests to evaluate the dynamic behavior of piles installed in a slope reinforced with rubble mound. In the structure, some sections (single-pile, 2×2 group-pile) were selected for the experiment. The moment of the group-pile decreased by up to 26% upon installation of the rubble mound, whereas the moment of the single-pile increased by up to 41%, thus demonstrating conflicting results.

Keywords

Acknowledgement

This research was funded by the "Korea Institute of Civil Engineering and Building Technology, grant number 20230132-001" and "Korea Institute of Marine Science & Technology Promotion (KIMST), grant number 2016-0065".

References

  1. Ashford, S.A. and Sitar, N. (2002), "Simplified method for evaluating seismic stability of steep slopes", J. Geotech. Geoenviron. Eng., 128(2), 119-128. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:2(119).
  2. Cihan, K. and Yuksel, Y. (2011), "Deformation of rubble-mound breakwaters under cyclic loads", Coast. Eng., 58(6), 528-539. https://doi.org/10.1016/j.coastaleng.2011.02.002.
  3. Cihan, K., Yuksel, Y., Berilgen, M. and Cevik, E.O. (2012), "Behavior of homogenous rubble mound breakwaters materials under cyclic loads", Soil Dyn. Earthq. Eng., 34(1), 1-10. https://doi.org/10.1016/j.soildyn.2011.10.009.
  4. Haigh, S.K. and Gopal Madabhushi, S.P. (2011), "Centrifuge modelling of pile-soil interaction in liquefiable slopes", Geomech. Eng., 3(1), 1-16. https://doi.org/10.12989/gae.2011.3.1.001.
  5. Heidary-Torkamani, H., Bargi, K., Amirabadi, R. and McCllough, N. J. (2014), "Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles", Soil Dyn. Earthq. Eng., 61, 92-106. http://doi.org/10.1016/j.soildyn.2014.01.024.
  6. Kim, D.S., Kim, N.R., Choo, Y.W. and Cho, G.C. (2013), "A newly developed state-of-the-art geotechnical centrifuge in Korea", KSCE J. Civil Eng., 17(1), 77-84. http://doi.org/10.1007/s12205-013-1350-5.
  7. Kim, Y.S. and Choi, J.I. (2017), "Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results", Geomech. Eng., 12(2), 239-255. https://doi.org/10.12989/gae.2017.12.2.239.
  8. Ko, K.W., Park, H.J., Ha, J.G., Jin, S., Song, Y.H., Song, M.J. and Kim, D.S. (2019), "Evaluation of dynamic bending moment of disconnected piled raft via centrifuge tests", Can. Geotech. J., 56(12), 1917-1928. http://doi.org/10.1139/cgj-2018-0248.
  9. Kwon, S.Y. and Yoo, M. (2019), "Evaluation of dynamic soil-pile-structure interactive behavior in dry sand by 3D numerical simulation", Appl. Sci., 9(13), 2612. https://doi.org/10.3390/app9132612.
  10. Kwon, S.Y. and Yoo, M. (2020). "Study on the dynamic soil-pile-structure interactive behavior in liquefiable sand by 3D numerical simulation", Appl. Sci., 10(8), 2723. https://doi.org/10.3390/app10082723.
  11. Lee, S.H., Choo, Y.W. and Kim, D.S. (2013), "Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests", Soil Dyn. Earthq. Eng., 44, 102-114. http://doi.org/10.1016/j.soildyn.2012.09.008.
  12. Lees, A.S. and Richards, D.J. (2011), "Centrifuge modelling of temporary roadway systems subject to rolling type loading", Geomech. Eng., 3(1), 45-59. https://doi.org/10.12989/gae.2011.3.1.045.
  13. McCullough, N.J., Dickenson, S.E., Schlechter, S.M. and Boland, J.C. (2007), "Centrifuge seismic modeling of pile-supported wharves", Geotech. Test. J., 30(5), 349-359. https://doi.org/10.1520/GTJ14066.
  14. Memos, C., Bouckovalas, G. and Tsiachris, A. (2001), "Stability of rubble-mound breakwaters under seismic action", In Coast. Eng., 2000, 1585-1598. https://doi.org/10.1061/40549(276)123
  15. MOF (Ministry of Oceans and Fisheries) (2017), Design standards of harbour and port. Sejong, Korea: Ministry of Oceans and Fisheries (in Korean).
  16. MOIS (Ministry of the Interior and Safety) (2017), Announcement of common application of seismic design criteria. Sejong, Korea: Ministry of the Interior and Safety (in Korean).
  17. Najma, A. and Ghalandarzadeh, A. (2019), "Experimental study on the seismic behavior of composite breakwaters located on liquefiable seabed", Ocean Eng., 186, 106127. https://doi.org/10.1016/j.oceaneng.2019.106127.
  18. Ovesen, N.K. (1979), "The scaling law relationship-panel discussion", Proceedings of the 7th European Conference on Soil Mechanics and Foundation Engineering.
  19. PIANC (Permanent International Association for Navigation Congresses) (2001), Seismic design guidelines for port structures. Rotterdam, Netherlands: International Navigation Association.
  20. Su, L., Lu, J., Elgamal, A. and Arulmoli, A.K. (2017), "Seismic performance of a pile-supported wharf: Three-dimensional finite element simulation.", Soil Dyn. Earthq. Eng., 95, 167-179. https://doi.org/10.1016/j.soildyn.2017.01.009.
  21. Takahashi, A. and Takemura, J. (2005), "Liquefaction-induced large displacement of pile-supported wharf", Soil Dyn. Earthq. Eng., 25(11), 811-825. https://doi.org/10.1016/j.soildyn.2005.04.010.
  22. Tokimatsu, K., Suzuki, H. and Sato, M. (2005), "Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation", Soil Dyn. Earthq. Eng., 25(7-10), 753-762. https://doi.org/10.1016/j.soildyn.2004.11.018.
  23. Tran, N.X., Bong, T. and Kim, S.R. (2022), "Kinematic and inertial interaction of single and group piles in slope by displacement phase relation", J. Earthq. Eng., 26(7), 3639-3659. https://doi.org/10.1080/13632469.2020.1813661.
  24. Vytiniotis, A., Panagiotidou, A.I. and Whittle, A.J. (2019), "Analysis of seismic damage mitigation for a pile-supported wharf structure", Soil Dyn. Earthq. Eng., 119, 21-35. https://doi.org /10.1016/j.soildyn.2018.12.020.
  25. Ye, J. and Wang, G. (2015), "Seismic dynamics of offshore breakwater on liquefiable seabed foundation", Soil Dyn. Earthq. Eng., 76, 86-99. https://doi.org/10.1016/j.soildyn.2015.02.003.
  26. Ye, J.H. and Jeng, D.S. (2013), "Three-dimensional dynamic transient response of a poro-elastic unsaturated seabed and a rubble mound breakwater due to seismic loading", Soil Dyn. Earthq. Eng., 44, 14-26. https://doi.org/10.1016/j.soildyn.2012.08.011.
  27. Yoo, M.T., Cha, S.H., Kim, M.M., Choi, J.I. and Han, J.T. (2012). "Evaluation of dynamic group-pile effect in dry sand by centrifuge model tests", Int. J. Offshore Polar Eng., 22(2).
  28. Yoo, M.T., Choi, J.I., Han, J.T. and Kim, M.M. (2013). "Dynamic py curves for dry sand from centrifuge tests", J. Earthq. Eng., 17(7), 1082-1102. https://doi.org/10.1080/13632469.2013.801377.
  29. Yoo, M.T., Han, J.T., Choi, J.I. and Kwon, S.Y. (2017), "Development of predicting method for dynamic pile behavior by using centrifuge tests considering the kinematic load effect", Bull. Earthq. Eng., 15(3), 967-989. https://doi.org/10.1007/s10518-016-9998-0.
  30. Yun, J.W. and Han, J.T. (2021), "Evaluation of soil spring methods for response spectrum analysis of pile-supported structures via dynamic centrifuge tests", Soil Dyn. Earthq. Eng., 141, 106537. https://doi.org/10.1016/j.soildyn.2020.106537.
  31. Yun, J.W., Han, J.T. and Kwan, J. (2022a), "Evaluation of the virtual fixed-point method for seismic design of pile-supported structures", KSCE J. Civil Eng., 26(2), 596-605. https://doi.org/10.1007/s12205-021-0422-1.
  32. Yun, J.W., Han, J.T. and Kim, D.Y (2022b), "Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand", Geomech. Eng., 30(6), 579-586. https://doi.org/10.12989/gae.2022.30.6.579.
  33. Yun, J.W., Han, J.T. and Kim, S.R. (2019), "Evaluation of virtual fixed points in the response spectrum analysis of a pile-supported wharf", Geotechnique Lett., 9(3), 238-244. https://doi.org/10.1680/jgele.19.00013.