DOI QR코드

DOI QR Code

Causes of local collapse of a precast industrial roof after a fire

  • Bruno Dal Lago (Department of Theoretical and Applied Sciences, Universita degli Studi dell'Insubria) ;
  • Paride Tucci (Professional Fire Safety Engineer)
  • Received : 2022.12.27
  • Accepted : 2023.03.07
  • Published : 2023.05.25

Abstract

Precast roofing systems employing prestressed elements often serve as smart structural solutions for the construction of industrial buildings. The precast concrete elements usually employed are highly engineered, and often consist in thin-walled members, characterised by a complex behaviour in fire. The present study was carried out after a fire event damaged a precast industrial building made with prestressed beam and roof elements, and non-prestressed curved barrel vault elements interposed in between the spaced roof elements. As a consequence of the exposure to the fire, the main elements were found standing, although some locally damaged and distorted, and the local collapse of few curved barrel vault elements was observed in one edge row only. In order to understand and interpret the observed structural performance of the roof system under fire, a full fire safety engineering process was carried out according to the following steps: (a) realistic temperature-time curves acting on the structural elements were simulated through computational fluid dynamics, (b) temperature distribution within the concrete elements was obtained with non-linear thermal analysis in variable regime, (c) strength and deformation of the concrete elements were checked with non-linear thermal-mechanical analysis. The analysis of the results allowed to identify the causes of the local collapses occurred, attributable to the distortion caused by temperature to the elements causing loss of support in early fire stage rather than to the material strength reduction due to the progressive exposure of the elements to fire. Finally, practical hints are provided to avoid such a phenomenon to occur when designing similar structures.

Keywords

Acknowledgement

Antonino Panico from FSE Italia Consortium and Marco Del Galdo from Politecnico di Milano are kindly acknowledged for their contribution on fire modelling and thermal mapping, respectively. Simone De Porcellinis developed his MSc thesis at Universita degli Studi dell'Insubria on the subject of the paper. Angelo Basso from Antonio Basso S.p.A. is kindly acknowledged for sharing the original shop drawings of the construction.

References

  1. Acker, A.V. (2003), "Shear resistance of prestressed hollow-core floors exposed to fire", Struct. Concrete, 4(2), 65-74. https://doi.org/10.1680/stco.2003.4.2.65
  2. Alimrani, N. and Balazs, G.L. (2018), "Precast concrete hollow core slabs exposed to elevated temperatures in terms of shear deterioration - review article", Concrete Struct., 19, 14-21. https://doi.org/10.32970/CS.2018.1.3.
  3. Atienza, J.M. and Elices, M. (2009), "Behaviour of prestressing steels after a simulated fire: Fire-induced damages", Constr. Build. Mater., 23(8), 2932-2940. https://doi.org/10.1016/j.conbuildmat.2009.02.024.
  4. Bamonte, P., Kalaba, N. and Felicetti, R. (2018), "Computational study on prestressed concrete members exposed to natural fires", Fire Saf. J., 97, 54-65. https://doi.org/10.1016/j.firesaf.2018.02.006.
  5. Bosio, M., Di Salvatore, C., Bellotti, D., Capacci, L., Belleri, A., Piccolo, V., Cavalieri, F., Dal Lago, B., Riva, P., Magliulo, G., Nascimbene, R. and Biondini, F. (2022), "Modelling and seismic response analysis of non-residential single-storey existing precast buildings in Italy", J. Earthq. Eng., 27(4), 1047-1068. https://doi.org/10.1080/13632469.2022.2033364.
  6. Buchanan, A.H. (2001), Fire Engineering Design Guide, 2nd Edition, Centre for Advanced Engineering, University of Canterbury, Christchurch, New Zealand.
  7. Butcher, K. (2003), Fire Engineering CIBSE Guide, Chartered Institution of Building Services Engineers, London, UK.
  8. Chen, L., Han, C., Xu, Q., Wang, Y.C., Li, M. and Leng, Y. (2020), "Postfire performance of prestressed concrete hollow-core floor systems with edge beams", ASCE J. Struct. Eng., 146(12), 04020262. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002845.
  9. Dal Lago, B. (2017), "Experimental and numerical assessment of the service behaviour of an innovative long-span precast roof element", Int. J. Concrete Struct. Mater., 11(2), 261-273. https://doi.org/10.1007/s40069-017-0187-6.
  10. Dal Lago, B. (2019), "Numerical simulation of seismic tests on precast concrete structures with various arrangements of cladding panels", Comput. Concrete, 23(2), 81-95. https://doi.org/10.12989/cac.2019.23.2.081.
  11. Dal Lago, B. and Lamperti Tornaghi, M. (2018), "Sliding channel cladding connections for precast structures subjected to earthquake action", Bull. Earthq. Eng., 16(11), 5621-5646. https://doi.org/10.1007/s10518-018-0410-0.
  12. Dal Lago, B., Nicora, A., Tucci, P. and Panico, A. (2023), "Precast concrete industrial portal frames subjected to simulated fire", FIB Symposium 2023, Istanbul, Turkey, June.
  13. Dal Lago, B., Nicora, A., Tucci, P. and Panico, A. (2023), "Precast concrete industrial portal frames subjected to simulated fire", FIB Symposium 2023, Istanbul, Turkiye, June.
  14. Del Prete, I., Cefarelli, G. and Nigro, E. (2016), "Application of criteria for selecting fire scenarios for structures within fire safety engineering approach", J. Build. Eng., 8, 208-217. https://doi.org/10.1016/j.jobe.2016.10.010.
  15. Di Bari, C., Rossi, E., Conigli, F., Calviglioni, R., Manni, C., Morriello, I. and Messale, F. (2016), "Rapporto tecnico sul calcolo del carico di fuoco, sulla metodologia di prova adottata e presentazione dei risultati delle prove di incendio ed estinzione effettuate su litio metallico e su celle litio-ione", ENEA Report RdS/PAR2015/199; National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
  16. DM 03/08/2015 (2015), Codice di Prevenzione Incendi, Ministero dell'Interno, Dipartimento dei Vigili del Fuoco, del Soccorso Pubblico e Della Difesa Civile, Direzione Centrale per la Prevenzione e la Sicurezza Tecnica.
  17. El-Fitiany, S.F. and Youssef, M.A. (2009), "Assessing the flexural and axial behaviour of reinforced concrete members at elevated temperature using sectional analysis", Fire Saf. J., 44, 691-703. https://doi.org/10.1016/j.firesaf.2009.01.005.
  18. Ellobody, E. (2014), "Advanced analysis of prestressed hollow core concrete slabs exposed to different fires", Adv. Struct. Eng., 17(9), 1281-1298. https://doi.org/10.1260/1369-4332.17.9.1281.
  19. Eurocode 1 - EN 1991-1-2 (2002), Actions on Structures, Part 1-2: General Actions - Actions on Structures Exposed to Fire, European Committee for Standardization, Brussels, Belgium.
  20. Eurocode 2 - EN 1992-1-2 (2004), Design of Structures, Part 1-2: General Rules- Structural Fire Design, European Committee for Standardization, Brussels, Belgium.
  21. Felicetti, R. (2022), "Assessment of a fire-damaged concrete overpass: The Verona bus crash case study", J. Struct. Fire Eng., 13(3), 293-306. https://doi.org/10.1108/JSFE-06-2021-0039.
  22. Felicetti, R., Gambarova, P.G. and Meda, A. (2009), "Residual behaviour of steel bars and R/C sections after a fire", Constr. Build. Mater., 23, 3546-3555. https://doi.org/10.1016/j.conbuildmat.2009.06.050.
  23. Franssen, J.M. and Bruls, A. (1997), "Design and tests of prestressed concrete beams", Fire Saf. Sci., 5, 1081-1092. http://doi.org/10.3801/IAFSS.FSS.5-1081.
  24. G+D Computing (2010), Using Strand7 (Straus7) - Introduction to the Strand7 Finite Element Analysis System System, Strand7 Pty Limited, Sydney, Australia.
  25. Gales, J., Robertson, L. and Bisby, L. (2016), "Creep of prestressing steels in fire", Fire Mater., 40, 875-895. https://doi.org/10.1002/fam.2345.
  26. Heo, I., Darkhanbat, K., Han, S.J., Choi, S.H., Jeong, H. and Kim, K.S. (2021), "Experimental and numerical investigations on fire-resistance performance of precast concrete hollow-core slabs", Appl. Sci., 11(23), 11500. https://doi.org/10.3390/app112311500.
  27. Jeanneret, C., Nicoletta, B., Robertson, L., Gales, J. and Kotsovinos, P. (2021), "Guidance for the post-fire structural assessment of prestressing steel", Eng. Struct., 235, 112023. https://doi.org/10.1016/j.engstruct.2021.112023.
  28. Jeyashree, T.M., Kannan Rajkumar P.R. and Satyanarayanan K.S. (2022), "Developments and research on fire response behavior of prestressed concrete members - A review", J. Build. Eng., 57, 104797. https://doi.org/10.1016/j.jobe.2022.104797.
  29. Kodur, V.K.R. and Hatinger, N. (2011), "A performance-based approach for evaluating fire resistance of prestressed concrete double T-beams", J. Fire Protect. Eng., 21(3), 185-222. https://doi.org/10.1177/1042391511417795.
  30. Kodur, V.K.R. and Shakya, A.M. (2017), "Factors governing the shear response of prestressed concrete hollowcore slabs under fire conditions", Fire Saf. J., 88, 67-88. https://doi.org/10.1016/j.firesaf.2017.01.003.
  31. Kose, M.M., Temiz, H. and Binici, H. (2006), "Effects of fire on precast members: A case study", Eng. Fail. Anal., 13(8), 1191-1201. https://doi.org/10.1016/j.engfailanal.2005.12.003.
  32. McGrattan, K., McDermott, R., Hostikka, S., Floyd, J., Vanella, M., Weinschenk, C. and Overholt, K. (2017), NIST Special Publication 1019 Fire Dynamics Simulator, 6th Edition, National Institute of Standards and Technology, Gaithersburg, MD, USA.
  33. Nguyen, H.T.N. and Tan, K.H. (2021), "Shear response of deep precast/prestressed concrete hollow core slabs subjected to fire", Eng. Struct., 227, 111398. https://doi.org/10.1016/j.engstruct.2020.111398.
  34. Parametric Technology Corporation (2010), Mathcad Release 15.0, Needham, MA, USA.
  35. Pedron, A. and Tondini, N. (2022), "Fire behaviour of a prestressed thin-walled concrete V-beam", Fire Technol., 58, 353-378. https://doi.org/10.1007/s10694-021-01149-3.
  36. Riva, P. and Franssen, J.M. (2008), "Non-linear and plastic analysis of RC beams subject to fire", Struct. Concrete, 9(1), 31-43. https://doi.org/10.1680/stco.2008.9.1.31
  37. Shakya, A.M. and Kodur, V.K.R. (2015), "Response of precast prestressed concrete hollowcore slabs under fire conditions", Eng. Struct., 87, 126-138. https://doi.org/10.1016/j.engstruct.2015.01.018.
  38. Shakya, A.M. and Kodur, V.K.R. (2016), "Effect of temperature on the mechanical properties of low relaxation seven-wire prestressing strand", Constr. Build. Mater., 124, 74-84. https://doi.org/10.1016/j.conbuildmat.2016.07.080.
  39. Stochino, F., Mistretta, F., Meloni, P. and Carcangiu, G. (2017), "Integrated approach for post-fire reinforced concrete structures assessment", Period. Polytech. Civil Eng., 61(4), 677-699.
  40. Tao, Z. (2015), "Mechanical properties of prestressing steel after fire exposure", Mater. Struct., 48, 3037-3047. https://doi.org/10.1617/s11527-014-0377-5.
  41. Thunderhead Engineering (2010), PyroSim: A Model Construction Tool for Fire Dynamics Simulator (FDS), PyroSim User Manual, Rel. 2010.2, Manhattan, NY, USA.
  42. USNRC and EPRI (2007), Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications, Volume 1: Main Report, NUREG- 1824 and EPRI 10 11999; U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES), Rockville, MD, and Electric Power Research Institute (EPRI), Palo Alto, CA, USA.
  43. Venanzi, I., Breccolotti, M., D'Alessandro, A. and Materazzi, A.L. (2014), "Fire performance assessment of HPLWC hollow core slabs through full-scale furnace testing", Fire Saf. J., 69, 12-22. https://doi.org/10.1016/j.firesaf.2014.07.004.
  44. Zhang, L., Wei, Y., Au, F.T.K. and Jing, L. (2017), "Mechanical properties of prestressing steel in and after fire", Mag. Concrete Res., 69(8), 379-388. https://doi.org/10.1680/jmacr.15.00267.