DOI QR코드

DOI QR Code

Seismic retrofit of a steel-reinforced concrete hospital building using continuous energy-dissipative steel columns

  • Received : 2022.05.10
  • Accepted : 2023.04.13
  • Published : 2023.05.25

Abstract

Seismic retrofit of an existing steel-reinforced concrete hospital building that features innovative use of a continuous energy-dissipative steel column (CEDC) system is presented in this paper. The special system has been adopted to provide an efficient solution taking into account the difficulties of applying traditional intervention techniques to minimize the impact on architectural functionality and avoid the loss of building function and evacuation during the retrofit implementation. The lateral stiffness and strength of the CEDC system were defined based on the geometric and mechanical properties of the steel strip dampers. The hysteretic behavior under cyclic loadings was defined using a simplified numerical model. Its effectiveness was validated by comparing the results of full-scale experimental data available from the literature. All the main design considerations of the retrofitting plan are described in detail. The effectiveness of the proposed retrofitting system was demonstrated by nonlinear time-history analyses under different sets of earthquake-strong ground motions. The analysis results show that the CEDC system is effective in controlling the deformation pattern and significantly reducing damage to the existing structure during major earthquakes.

Keywords

Acknowledgement

The research activity is included in the DPC/RELUIS Project 2019-2021 - WP5: "Rapid, low-impact and integrated retrofit interventions" funded by the Italian Department of Civil Protection (DPC). Part of this study has been developed within the activity commissioned by the National Cancer Institute "G. Pascale Foundation" of Naples to the Department of Architecture and Industrial Design of the University of Campania "Luigi Vanvitelli", aimed at supervising and validating the activity of AIRES Engineering Srl aimed at seismic vulnerability assessment of the Pascale hospital.

References

  1. Aghagholizadeh, M. and Makris, N. (2018), "Seismic response of a yielding structure coupled with a rocking wall", J. Struct. Eng., 144(2), 04017196. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001894.
  2. Ajrab, J.J., Peckan, G. and Mander, J.B. (2004), "Rocking wallframe structures with supplemental tendon system", J. Struct. Eng., 130(6), 895-1203. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(895).
  3. Alavi, B. and Krawinkler, H. (2004), "Strengthening of moment resisting frame structures against near-fault ground motion effects", Earthq. Eng. Struct. Dyn., 33, 707-22. https://doi.org/10.1002/eqe.370.
  4. Applied Technology Council (1996), "Seismic Evaluation and Retrofit of Concrete Buildings", Report no ATC 40; Redwood City.
  5. Ayala, A.G., Castellanos, H. and Lopez, S. (2012), "A displacement-based seismic design method with damage control for RC buildings", Earthq. Struct., 3(3-4), 413-434. https://doi.org/ 10.12989/eas.2012.3.3_4.413.
  6. Balducci, A. (2005), "Dissipative Towers Application", Rep. No. International and European Classification E04H9/02. Kanpur, India: National Information Centre of Earthquake Engineering.
  7. Banuelos-Garcia, F.H., Ayala, G. and Lopez, S. (2020), "A displacement-based seismic design procedure for buildings with fluid viscous dampers", Earthq. Struct., 18(5), 609-623. https://doi.org/10.12989/eas.2020.18.5.609.
  8. Barbagallo, F., Bosco, M., Marino, E.M., Rossi, P.P. and Stramondo, P. (2017), "A multi-performance design method for seismic upgrading of existing RC frames by BRBs", Earthq. Eng. Struct. Dyn., 46, 1099-1119. https://doi.org/10.1002/eqe.2846.
  9. Bergami, A.V. and Nuti, C. (2013), "A design procedure of dissipative braces for seismic upgrading structures", Earthq. Struct., 4(1), 85-105. https://doi.org/10.12989/eas.2013.4.1.085.
  10. Bruschi, E., Quaglini, V. and Calvi, P.M. (2021), "A simplified design procedure for seismic upgrade of frame structures equipped with hysteretic dampers", Eng. Struct., 251, 113504. https://doi.org/10.1016/j.engstruct.2021.113504.
  11. Calado, L., Proenca, J.M., Espinha, M. and Castiglioni, C.A. (2013), "Hysteretic behavior of dissipative welded fuses for earthquake resistant composite steel and concrete frames", Steel Compos. Struct., 14(6), 547-569. https://doi.org/10.12989/scs.2013.14.6.547.
  12. Cao, X.Y., Shen, D., Feng, D.C., Wang, C.L., Qu, Z. and Wu, G. (2022a), "Seismic retrofitting of existing frame buildings through externally attached sub-structures: State of the art review and future perspectives", J. Build. Eng., 57, 104904. https://doi.org/10.1016/j.jobe.2022.10490.
  13. Cao, X.Y., Feng, D.C., Wu, G. and Wang, Z. (2022b), "Experimental and theoretical investigations of the existing reinforced concrete frames retrofitted with the novel external SC-PBSPC BRBF sub-structures", Eng. Struct., 256: 113982. https://doi.org/10.1016/j.engstruct.2022.113982.
  14. Cao, X.Y., Xiong, C.Z., Feng, D.C. and Wu, G. (2022c), "Dynamic and probabilistic seismic performance assessment of precast prestressed reinforced concrete frames incorporating slab influence through three-dimensional spatial model", Bull. Earthq. Eng., 20(12), 6705-6739. https://doi.org/10.1007/s10518-022-01455-3.
  15. Cao, X.Y., Feng, D.C. and Li, Y. (2023), "Assessment of various seismic fragility analysis approaches for structures excited by non-stationary stochastic ground motions", Mech. Syst. Signal Process., 186, 109838. https://doi.org/10.1016/j.ymssp.2022.109838.
  16. Chitty, L. (1947), "LXXVIII. On the cantilever composed of a number of parallel beams interconnected by cross bars", London, Edinburgh, Dublin Philosoph. Mag. J. Sci., 38, 685-699. https://doi.org/10.1080/14786444708521646.
  17. De Matteis, G., Brando, G., Panico, S. and Mazzolani, F.M. (2009a), "Bracing type pure aluminium stiffened shear panels: an experimental study", Adv. Steel Constr., 5(2), 106-119. https://doi.org/10.18057/IJASC.2009.5.2.1
  18. De Matteis, G., Formisano, A. and Mazzolani, F.M. (2009b), "An innovative methodology for seismic retrofitting of existing RC buildings by metal shear panels", Earthq. Eng. Struct. Dyn., 38(1), 61-78. https://doi.org/10.1002/eqe.841.
  19. De Matteis, G. and Ferraioli, M. (2018), "Metal shear panels for seismic upgrading of RC buildings: A case study", Key Eng. Mater., 763, 1058-1066. https://doi.org/10.4028/www.scientific.net/KEM.763.1058.
  20. De Matteis, G. and Monsef Ahmadi, H. (2020), "Hysteretic behavior of steel shear panels with internal rectangular-shaped links", J. Constr. Steel Res., 177, 106451. https://doi.org/10.1016/j.jcsr.2020.106451.
  21. Deng, K., Pan, P., Sun, J., Liu, J. and Xue, Y. (2014), "Shape optimization design of steel shear panel dampers", J. Constr. Steel Res., 99, 187-193. https://doi.org/10.1016/j.jcsr.2014.03.001.
  22. Di Cesare, A. and Ponzo, F.C. (2017), "Seismic retrofit of reinforced concrete frame buildings with hysteretic bracing systems: design procedure and behaviour factor", Shock. Vib., 2639361. https://doi.org/10.1155/2017/2639361.
  23. Dimakogianni, D., Dougka, G. and Vayas, I. (2015), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS1-2)", Eng. Struct., 90, 83-95. https://doi.org/10.1016/j.engstruct.2015.01.054.
  24. Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dyn., 29, 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::aideqe958>3.0.co;2-%23.
  25. Dusicka, P. and Iwai, R. (2007), "Development of linked column frame system for seismic lateral loads", Proceedings of the SEI Structures Congress.
  26. Dougka, G., Dimakogianni, D. and Vayas, I. (2014), "Innovative energy dissipation systems (FUSEIS 1-1)-experimental analysis", J. Constr. Steel Res., 96, 69-80. https://doi.org/10.1016/j.jcsr.2014.01.003.
  27. EN 1998-1 (2004), Eurocode 8: Design provisions for earthquake resistance of structures, European Communities for Standardization, Brussels, Belgium.
  28. EN 1998-3 (2005), Eurocode 8: Design of structures for earthquake resistance - Part 3: Assessment and retrofitting of buildings, European Communities for Standardization, Brussels, Belgium.
  29. Esfandiari, J. Zangeneh, E. and Esfandiari, S. (2022), "Experimental and numerical investigation on RC momentResisting frames retrofitted with NSD yielding dampers", Adv. Concr. Constr., 13(4), 339-347. https://doi.org/10.12989/acc.2022.13.4.339.
  30. Fardis, M.N. (2009), Seismic Design, Assessment and Retrofitting of Concrete Buildings, Springer.
  31. Ferraioli, M., Abruzzese, D., Miccoli, L., Vari, A. and Di Lauro, G. (2010), "Structural identification from environmental vibration testing of asymmetric-plan hospital building in Italy", Proceedings of COST ACTION C26: Urban Habitat Constructions under Catastrophic Events, 981-986.
  32. Ferraioli, M. and Mandara A. (2016), "Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method", Math. Probl. Eng., 8934196. https://doi.org/10.1155/2016/8934196.
  33. Ferraioli, M. and Mandara, A. (2017), "Base isolation for seismic retrofitting of a multiple building structure: Design, construction, and assessment", Math. Probl. Eng., 4645834. https://doi.org/10.1155/2017/4645834.
  34. Ferraioli, M. and Lavino, A. (2018), "A displacement-based design method for seismic retrofit of RC buildings using dissipative braces", Math. Probl. Eng., 5364564. https://doi.org/10.1155/2018/5364564.
  35. Ferraioli, M., Nuzzo, D. and Concilio, A. (2019), "Shape memory alloys for earthquake building protection", Proceedings of SPIE - The International Society for Optical Engineering, 10970:109701M. https://doi.org/10.1117/12.2513605.
  36. Ferraioli, M., Lavino, A., Molitierno, C. and Di Lauro, G. (2021), "Seismic retrofit of an existing reinforced concrete building with buckling-restrained braces", Open J. Civ. Eng., 15(1), 203-225. https://doi.org/10.2174/1874149502115010203.
  37. Ghabraie, K., Chan, R., Huang, X. and Xie, Y.M. (2010), "Shape optimization of metallic yielding devices for passive mitigation of seismic energy", Eng. Struct., 32(8), 2258-2267. https://doi.org/10.1016/j.engstruct.2010.03.028.
  38. Gioiella, L., Tubaldi, E., Gara, F., Dezi, L. and Dall'Asta, A. (2018), "Modal properties and seismic behaviour of buildings equipped with external dissipative pinned rocking braced frames", Eng. Struct., 172, 807-819. https://doi.org/10.1016/j.engstruct.2018.06.043.
  39. Gunay, S., Korolyk, M., Mar, D., Mosalam, K. and Rodgers, J. (2009), "Infillwalls as a spine to enhance the seismic performance of non-ductile reinforced concrete frames", ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures: 1093-1104, http://doi.org/10.1061/41084(364)100.
  40. Hitaka, T. and Sakino, K. (2008), "Cyclic tests on a hybrid coupled wall utilizing a rocking mechanism", Earthq. Eng. Struct. Dyn. 37, 1657-1676. https://doi.org/10.1002/eqe.832.
  41. Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/scs.2020.37.3.259.
  42. Javidan, M.M., Chun, S. and Kim, J. (2021a), "Experimental study on steel hysteretic column dampers for seismic retrofit of structures", Steel Compos. Struct., 40(4), 495-509. https://doi.org/10.12989/scs.2021.40.4.495.
  43. Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021b), "Full-scale tests of two-story RC frames retrofitted with steel plate multislit dampers", Steel Compos. Struct., 39(5), 645-664. https://doi.org/10.12989/scs.2021.39.5.645.
  44. IDEA Connections (2021), Structural Design of Steel Connections and Joints, www.ideastatica.com.
  45. Iervolino, I., Galasso, C. and Cosenza, E. (2010), "REXEL: computer aided record selection for code-based seismic structural analysis", B. Earthq. Eng., 8, 339-362. https://doi.org/10.1007/s10518-009-9146-1.
  46. Impollonia, N. and Palmieri, A. (2018), "Seismic performance of buildings retrofitted with nonlinear viscous dampers and adjacent reaction towers", Earthq. Eng. Struct. Dyn., 47(5), 1329-1351. https://doi.org/10.1002/eqe.3020.
  47. Ji, X., Kato, M., Wang, T., Hitaka, T. and Nakashima, M. (2009), "Effect of gravity columns on mitigation of drift concentration for braced frames", J. Constr. Steel Res., 65, 2148-56. https://doi.org/10.1016/j.jcsr.2009.07.003.
  48. Kim, J., Choi, H. and Chung, L. (2004), "Energy-based seismic design of structures with buckling-restrained braces", Steel Compos. Struct., 4(6), 437-452. https://doi.org/10.12989/scs.2004.4.6.437.
  49. Kim, J. (2019), "Development of seismic retrofit devices for building structures", Int. J. High-Rise Build., 8(3), 221-227. https://doi.org/10.21022/IJHRB.2019.8.3.221.
  50. Krinitzsky, E.L. and Chang F.K. (1977), "State-of-the-Art for Assessing Earthquake Hazards in the United States, Report No. 7, Specifying Peak Motions for Design Earthquakes", Miscellaneous Paper S-73-1, US Army Engineer Waterways Experiment Station.
  51. Lee, C.H., Ju, Y.K., Min, J.K., Lho, S.H. and Kim, S.D. (2015), "Non-uniform steel strip dampers subjected to cyclic loadings", Eng. Struct., 99, 192-204. https://doi.org/10.1016/j.engstruct.2015.04.052.
  52. Lee, J. and Kim, J. (2015), "Seismic performance evaluation of moment frames with slit-friction hybrid dampers", Earthq. Struct., 9(6), 1291-1311. https://doi.org/10.12989/eas.2015.9.6.1291.
  53. Li, Y.W., Li, G.Q., Sun, F.F. and Jiang, J. (2018a), "Experimental study on continuous energy-dissipative steel columns under cyclic loading", J Construct. Steel Res, 141, 104-117. https://doi.org/10.1016/j.jcsr.2017.10.015.
  54. Li, Y.W., Li, G.Q., Jiang, J. and Sun, F.F. (2018b), "Mitigating seismic response of RC moment resisting frames using steel energy-dissipative columns", Eng. Struct., 174, 586-600. https://doi.org/10.1016/j.engstruct.2018.07.097.
  55. Li, Y.W., Li, G.Q., Jiang, J. and Wang, Y.B. (2019a), "Experimental study on seismic performance of RC frames with Energy- Dissipative Rocking Column system", Eng. Struct., 194, 406-419. https://doi.org/10.1016/j.engstruct.2019.05.052.
  56. Li, Y.W., Li, G.Q., Jiang, J. and Sun, F.F. (2019b), "Modeling of behavior of continuous energy-dissipative steel columns under cyclic loads", J. Earthq. Eng., 23(9), 1560-1583. https://doi.org/10.1080/13632469.2017.1387202.
  57. Ma, X., Borchers, E., Pena, A., Krawinkler, H. and Deierlein, G. (2010), Design and Behavior of Steel Shear Plates with Openings as Energy-Dissipating Fuses, John A. Blume Earthquake Engineering Center Technical Report.
  58. MacRae, G.A., Kimura, Y. and Roeder, C. (2004), "Effect of column stiffness on braced frame seismic behavior", J. Struct. Eng. ASCE, 130(3), 381-91. https://doi.org/10.1061/(ASCE)07339445(2004)130:3(381).
  59. Makris, N. and Aghagholizadeh, M. (2017), "The dynamics of an elastic structure coupled with a rocking wall", Earthq. Eng. Struct. Dyn., 46, 945-92. https://doi.org/10.1002/eqe.2838.
  60. Mander, JB., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)07339445(1988)114:8(1804).
  61. Marriott, D., Pampanin, S., Bull, D. and Palermo, A. (2008), "Dynamic testing of precast, post-tensioned rocking wall systems with alternative dissipating solutions", Bull. N. Zealand Soc. Earthq. Eng., 41(2), 90-103. https://doi.org/10.5459/bnzsee.41.2.90-103.
  62. Mazza, F. and Vulcano, A. (2015), "Displacement-based design procedure of damped braces for the seismic retrofitting of r.c. framed buildings", Bull. Earthq. Eng., 13(7), 2121-2143. https://doi.org/10.1007/s10518-014-9709-7.
  63. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2020), "Performance of innovative composite bucklingrestrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/scs.2020.36.2.163.
  64. Monsef Ahmadi, H. and De Matteis, G. (2020), "Seismic performance of steel shear panels with butterfly-shaped links", Ing. Sismica, 37(1), 84-101.
  65. NTC-Guidelines (2018), Technical Standards for Constructions, Official Journal of the Italian Republic. 20.02.2018, Rome, Italy.
  66. NTC-Instructions (2019), Instructions for the Application of the New Technical Norms on Constructions, Official Journal of the Italian Republic. Circ. 21.01.2019, Rome, Italy.
  67. Nuzzo, I., Losanno, D. and Caterino, N. (2019), "Seismic design and retrofit of frames structures with hysteretic dampers: a simplified displacement-based procedure", Bull. Earthq. Eng., 17, 2787-2819. https://doi.org/10.1007/s10518-019-00558-8.
  68. Oren, L. and Abecassis, D. (2015), "Seismic behavior and design of wall-EDD-frame systems", Front. Built Environ. 1:7. https://doi.org/10.3389/fbuil.2015.00007.
  69. Park, J., Lee, J., Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-436. https://doi.org/10.12989/scs.2012.13.5.423.
  70. Qu, B., Sanchez-Zamora, F. and Pollino, M. (2014), "Mitigation of inter-story drift concentration in multi-story steel concentrically braced frames through implementation of rocking cores", Eng. Struct., 70, 208-217. https://doi.org/10.1016/j.engstruct.2014.03.032.
  71. Qu, Z., Wada, A., Motoyui, S., Sakata, H. and Kishiki, S. (2012), "Pin-supported walls for enhancing the seismic performance of building structures", Earthq. Eng. Struct. Dyn., 41, 2075-2091. https://doi.org/10.1002/eqe.2175.
  72. Reyes-Salazar, A. and Haldar, A. (2000), "Dissipation of Energy in Steel Frames with PR Connections", Struct. Eng. Mech., 9(3), https://doi.org/10.12989/sem.2000.9.3.241.
  73. Reyes-Salazar, A., Cervantes-Lugo, J.A., Lopez-Barraza, A., Bojorquez, E. and Borjorquez, J. (2016a), "Seismic response of 3D steel buildings with hybrid connections: PRC and FRC", Steel Compos. Struct., 22(1), 113-139. https://doi.org/10.12989/scs.2016.22.1.113.
  74. Reyes-Salazar A., Llanes-Tizoc, M.D., Bojorquez, J., Bojorquez, E., Lopez-Barraza, A. and Haldar, A. (2016b), "Force reduction factors for steel buildings with welded and post-tensioned connections", Bull. Earthq. Eng., 14, 2827-2858. https://doi.org/10.1007/s10518-016-9925-4.
  75. Ricles, M., Sause, R., Garlock, M.M. and Zhao, C. (2001), "Posttensioned seismic-resistant connections for steel frames", J. Struct. Eng., ASCE, 127(2), 113-121. https://doi.org/10.1061/(ASCE)07339445(2001)127:2(113).
  76. SAP2000 (2022), Linear and Nonlinear Static and Dynamic Analysis of Three-Dimensional Structures. CSI Computer & Structures Inc., Berkeley.
  77. Smerzini, C. and Paolucci, R. (2011), SIMBAD: a database with Selected Input Motions for displacement-Based Assessment and Design - 2nd release, Research Project DPC - RELUIS 2010-2013, Department of Structural Engineering, Politecnico di Milano, Italy.
  78. Takeuchi, T., Chen, X. and Matsui, R. (2015), "Seismic performance of controlled spine frames with energy-dissipating members", J. Constr. Steel Res., 114, 51-65. https://doi.org/10.1016/j.jcsr.2015.07.002.
  79. Takewaki, I. (2009), Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes, John Wiley & Sons.
  80. Tsai, K.C., Chen, H.W., Hong, C.P. and Su YF. (1993), "Design of steel triangular plate energy absorbers for seismic resistant construction", Earthq Spectra, 9(3), 505-28. http://dx.doi.org/10.1193/1.1585727.
  81. Vanmarcke, E.H. (1979), "State-of-the-art for Assessing Earthquake Hazards in the United States, Report 14, Representation of Earthquake Ground Motions: Scaled Accelerograms and Equivalent Response Spectra", Miscellaneous Paper S-73-1 Report 14, US Army Engineer Waterways Experiment Station.
  82. Vayas, I., Karydakis, P., Dimakogianni, D., Dougka, G., Castiglioni, C.A. and Kanyilmaz, A. (2012), "Dissipative Devices for Seismic Resistant Steel Frames. The FUSEIS project, final report. Research Programme of the Research Fund for Coal and Steel.
  83. Wada, A., Qu, Z., Motoyui, S. and Sakata, H. (2011), "Seismic retrofit of existing SRC frames using rocking walls and steel dampers", Frontiers Archit. Civil Eng. China, 5(3), 259-266. https://doi.org/ 10.1007/s11709-011-0114-x.
  84. Wen, Y.K. (1976), "Method of random vibration of hysteretic systems", J. Eng. Mech., 102(2), 249-263. https://doi.org/10.1061/JMCEA3.0002106.
  85. Wolski, M., Ricles, J.M. and Sause, R. (2009), "Experimental Study of a Self-Centering Beam-Column Connection with Bottom Flange Friction Device", J. Struct. Eng., ASCE, 135(5), 479-488. https://doi.org/ 10.1061/(ASCE)ST.1943-541X.0000006.
  86. Wu, S., Pan, P., Nie, X., Wang, H. and Shen, S. (2017), "Experimental investigation on reparability of an infilled rocking wall frame structure", Earth. Eng. Struct. Dyn., 1-25. https://doi.org/10.1002/eqe.2930.
  87. Xu, Y.H., Li, A.Q., Zhou, X.D. and Sun, P. (2011), "Shape optimization study of mild steel slit dampers", Adv. Mat. Res., 168-170. https://doi.org/10.4028/www.scientific.net/AMR.168170.2434.
  88. Yang, M. and Zhang, C. (2019), "Comparative study on retrofitting strategies for residential buildings after earthquakes", Earthq. Struct., 16(4), 375-389. https://doi.org/10.12989/eas.2019.16.4.375.