DOI QR코드

DOI QR Code

GENERALIZED HEXAGONS EMBEDDED IN METASYMPLECTIC SPACES

  • Received : 2022.10.27
  • Accepted : 2023.05.17
  • Published : 2023.07.01

Abstract

We consider thick generalized hexagons fully embedded in metasymplectic spaces, and we show that such an embedding either happens in a point residue (giving rise to a full embedding inside a dual polar space of rank 3), or happens inside a symplecton (giving rise to a full embedding in a polar space of rank 3), or is isometric (that is, point pairs of the hexagon have the same mutual position whether viewed in the hexagon or in the metasymplectic space-these mutual positions are equality, collinearity, being special, opposition). In the isometric case, we show that the hexagon is always a Moufang hexagon, its little projective group is induced by the collineation group of the metasymplectic space, and the metasymplectic space itself admits central collineations (hence, in symbols, it is of type F4,1). We allow non-thick metasymplectic spaces without non-thick lines and obtain a full classification of the isometric embeddings in this case.

Keywords

Acknowledgement

The authors warmly thank Anneleen De Schepper and Linde Lambrecht for some fruitful discussions on the topic of the paper. They would also like to thank the anonymous referee for a careful reading and inquiring some more explanation at various points that made the paper more accessible.

References

  1. F. Buekenhout and E. E. Shult, On the foundations of polar geometry, Geom. Dedicata 3 (1974), 155-170.
  2. A. M. Cohen, An axiom system for metasymplectic spaces, Geom. Dedicata 12 (1982), no. 4, 417-433. https://doi.org/10.1007/BF00147584
  3. A. M. Cohen and G. Ivanyos, Root filtration spaces from Lie algebras and abstract root groups, J. Alg. 300 (2006), 433-454. https://doi.org/10.1016/j.jalgebra.2005.09.043
  4. A. M. Cohen and G. Ivanyos, Root shadow spaces, European J. Combin. 28 (2007), 1419-1441. https://doi.org/10.1016/j.ejc.2006.05.016
  5. K. Coolsaet, The smallest split Cayley hexagon has two symplectic embeddings, Finite Fields Appl. 16 (2010), no. 5, 380-384. https://doi.org/10.1016/j.ffa.2010.06.003
  6. A. De Schepper, N. S. N. Sastry, and H. Van Maldeghem, Split buildings of type F4 in buildings of type E6, Abh. Math. Sem. Univ. Hamburg 88 (2018), 97-160. https://doi.org/10.1007/s12188-017-0190-5
  7. A. De Schepper, N. S. N. Sastry, and H. Van Maldeghem, Buildings of exceptional type in buildings of type E7, Dissertationes Math. 573 (2022), 1-80. https://doi.org/10.4064/dm839-10-2021
  8. A. De Wispelaere, J. A. Thas, and H. Van Maldeghem, A characterization of the Grassmann embedding of H(q), with q even, Des. Codes Cryptogr. 55 (2010), 212-130.
  9. P. Jansen and H. Van Maldeghem, Subgeometries of (exceptional) Lie incidence geometries induced by maximal root subsystems, in preparation.
  10. A. Kasikova and H. Van Maldeghem, Vertex opposition in spherical buildings, Des. Codes Cryptogr. 68 (2013), 285-318. https://doi.org/10.1007/s10623-012-9643-0
  11. M. A. Ronan, A geometric characterization of Moufang hexagons, Invent. Math. 57 (1980), no. 3, 227-262. https://doi.org/10.1007/BF01418928
  12. R. Scharlau, A structure theorem for weak buildings of spherical type, Geom. Dedicata 24 (1987), no. 1, 77-84. https://doi.org/10.1007/BF00159748
  13. A. Steinbach and H. Van Maldeghem, Regular embeddings of generalized hexagons, Canad. J. Math. 56 (2004), no. 5, 1068-1093. https://doi.org/10.4153/CJM-2004-048-3
  14. J. A. Thas and H. Van Maldeghem, Flat lax and weak lax embeddings of finite generalized hexagons, European J. Combin. 19 (1998), 733-751. https://doi.org/10.1006/eujc.1998.0240
  15. J. Tits, Sur la trialite et certains groupes qui s'en deduisent, Inst. Hautes Etudes Sci. Publ. Math. 1959 (1959), no. 2, 13-60.
  16. J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer, Berlin, 1974.
  17. J. Tits and R. Weiss, Moufang Polygons, Springer Monographs in Mathematics, Springer, 2002
  18. H. Van Maldeghem, Generalized Polygons, Modern Birkhauser Classics, Birkhauser, 1998. https://doi.org/10.1007/978-3-0348-0271-0